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Abstract. This work proposes a similarity measure between secondary struc-
tures of proteins capable of fusing cell membranes and its implementation in a
classification system. For the evaluation of the metric we used secondary struc-
tures estimated from amino acid sequences of Class I and Class II viral fusogens
(VFs), as well as VFs precursor proteins. We evaluated three different classifiers
based on k-Nearest Neighbors, Support Vector Machines and One-Class Support
Vector Machines in different configurations. This is a first approach to the simi-
larity measure with satisfactory results. It is possible that this method could allow
the identification of unknown membrane fusion proteins in other biological mod-
els than the proposed in this work.

Keywords: Cell Membrane Fusion, Viral Fusogen, Similarity Measure, Support
Vector Machines, One-Class Support Vector Machines, k-Nearest Neighbors

1 Introduction

Fusion between cells is needed in many cellular events. Some of the most studied events
are myoblasts fusion during muscle formation [1], fusion of gametes during fertiliza-
tion [2] and fusion between extracellular vesicles (EVs) and target cells [3]. Cellular
membranes cannot fuse spontaneously, this process is catalyzed by proteins named fu-
sogens [4]. However, it is still unknown which proteins carry out the fusion mechanism
during these events.

One of the best understood fusion mechanisms is the fusion between the membrane
of an enveloped virus and the membrane of the target cell. The viral fusion proteins, or
viral fusogens, can be grouped in at least three classes according to their structure and
mechanism of action. Most of the known viral fusogens belong to Class I and II, that
is why these classes are the better characterized. At secondary structure level, Class I
viral fusogens present mostly a-helix structure, while Class II are organized mainly in
B-sheet [5]. One of the few known cellular membrane fusion proteins is EFF protein
from C. elegans. This protein is structurally homologous to Class II viral fusogens, also
preserving the B-sheet secondary structure organization. In spite of this homology, the
amino acid sequence highly differs from Class II viral fusogens sequences [6].

In this work, we intend to develop a similarity measure able to discriminate proteins
with fusion capacity in different biological models, based on the proteins secondary
structure.
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Fig. 1. Context of secondary structure prediction. Gene expression is the process by which in-
formation contained in a genome is used to direct protein synthesis. The protein folds into a
functional tridimensional molecule at two levels: secondary and tertiary structure.

In Section 2 we describe the previous attempts to find similarity between secondary
structure sequences and its applications, including pattern recognition methods. In Sec-
tion 3 the secondary structure alignment algorithm is explained, as well as the advan-
tages of implementing it to our problem. The description of the data available and the
experimental results are in Section 4. Section 5 concludes and presents some possible
directions of work.

2 Background

The search for protein secondary structures alignment gathered strength with the ap-
pearance of reliable tools for secondary structure prediction from amino acid sequences
such as described by Cuff et al. [7] and Mc Guffin et al. [8]. These tools return, for each
amino acid position, an H (a-helix), E (B-sheet), or C (random coil) character corre-
sponding to the most probable structure in that position, considering the propensities of
individual amino acids (Figure 1).

Most of the literature relative to secondary structure alignment is based on the
method proposed by Przytycka et al. [9] called SSEA (Secondary Structure Element
Alignment). In this method, the secondary structure of each protein is represented as a
summarized and ordered sequence of characters H, E and C (Figure 2). The consecutive
repeated characters are collapsed in an element, and the length of the element is stored.
SSEA algorithm is analogous to the global alignment algorithm based on dynamic pro-
gramming proposed by Needleman-Wunsch [10], but using a different score assignment
system. When aligning two secondary structures X and Y, a score is calculated for each
pair of elements x and y. Each score S(x,y) is defined in Equation 1, where L(x) and
L(y) are the length of the element x and y, respectively. The score is used to fill an align-
ment matrix as described by Needleman-Wunsch. Besides the score system, the other
parameter in an alignment is the gap penalty. A gap comprises an insertion or deletion
in a sequence, usually occurring from a single mutational event. SSEA method do not
analyze explicitly the role of gap penalty in the alignment.
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Fig.2. Secondary Structure Element Alignment (SSEA) concepts. A secondary structure se-
quence is obtained from an amino acid sequence using Psipred [8]. The consecutive repeated
characters are collapsed into elements. Each element is associated with the length of the col-
lapsed characters. The group of ordered elements is a secondary structure element sequence. The
sum of lenghts of the elements equals the length of the sequence.

The final similarity score in a Needleman-Wunsch alignment corresponds to the
last cell score in an alignment matrix and is normalized by the mean of the length of the
two sequences. This final score (d(X,Y)) is between 0 and 1, the higher the score, the
higher the similarity between those two proteins according to the secondary structure.
Przytycka et al. proposed and applied this metric to generate a taxonomic tree through a
clustering algorithm. The generated tree was compared with trees generated with meth-
ods that involve more information, and the taxonomic organization was in agreement.
Almost at the same time, Xu et al. [11] used a similar measure to identify two enzymes
in Archaea. They also do alignments using a dynamic programming algorithm, but do
not collapse consecutive characters.

McGuffin et al. [12] proposed that the prediction of proteins secondary structure
and the alignment of its elements allows to detect distant homologs in a better way than
methods based on amino acid sequence. Different amino acid sequences may adopt
similar tridimensional structures. The capacity to identify distant homologs from the
alignment of secondary structure elements was also evaluated by Zhang et al. [13]. The
identification of distant homology was accomplished through a method based on Sup-
port Vector Machines (SVM), and different metrics were compared. The classification
from secondary structure alignments obtained one of the highest accuracy values. Si et
al. [14] applied the method to identify proteins with a highly conserved tridimensional
domain, called TIM-barrel (triose-phosphate isomerase) allowing to identify this do-
main in Bacillus subtilis proteome with 99% of accuracy using SVM. SSEA method
was also applied successfully by Ni et al. [15] to the prediction of outer membrane pro-
teins from bacteria. They developed a kernel function based on the metric proposed in
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SSEA, capable of classifying outer membrane proteins using a method based on SVM
with a 97.7% accuracy.

3 Proposed system

3.1 Development of a similarity measure

Our bioinformatics search is based on viral fusogens, since these are the only known
fusion machineries capable of catalyzing the fusion of membranes outside cells. Be-
cause of the amount of information available, we focus on Classes I and II. Owing to
the high divergence at sequence level in viral fusogens, algorithms that find similarity
between amino acid sequences are frequently not enough to identify similar proteins.
To solve this, we evaluate a metric capable of discriminating secondary structure sig-
nals between viral fusogens. Our task is to tune up this technique so we can evaluate it
later with proteins from other biological models, as the ones described previously.

Viral fusogens are synthesized as inactive precursors (VFPs), that under certain con-
ditions are cleaved, releasing a transmembrane protein with fusion capacity. We refer
to the ectodomain as the fusogen (VF) (Figure 3). Considering the necessity to search
fusogens in proteins synthesized as precursors, our algorithm is intended to correctly
align VFs with other VFs, but also with VFPs.

Our protein similarity measure is developed based on SSEA but modifies the align-
ment algorithm and score normalization, and explores the gap penalty incidence. When
aligning the secondary structure of a VF and a VFP the algorithm will not consider
the local alignment between the VF and the VFP fusogenic region, since Needleman-
Wunsch algorithm computes a global alignment. For this reason, we propose to apply
a local alignment algorithm, analogous to Smith-Waterman algorithm [16], which al-
lows the correct alignment between fusogens and proteins that contain a fusogen. Thus,
we perform secondary structure representations alignments (VFs and VFPs) in pairs,
applying SSEA method, substituting the alignment algorithm with Smith-Waterman al-
gorithm. Although the local alignment approach was described by Fontana et al. [17] it
was not applied to a specific problem, the tool is no longer publicly available and we
did not find any articles that apply this modification.

In SSEA method the final score corresponds to the last cell score in the matrix of a
Needleman-Wunsch global alignment. Since we work with a local alignment algorithm,
our final score is the maximum score obtained in the dynamic programming matrix as
described by Smith-Waterman.

The VFs sequences length is variable between the two classes, and also inside each
class. The same happens with the VFPs sequences length, so we would not expect to find
a relation between the length of VFs and the respective VFPs. For this reason we could
expect that the normalization method applied in SSEA would fail, since the alignment
final score is divided between the mean of the pair of proteins sequences length. Thus,
we propose another modification to the metric, where the final score is normalized by
the mean of the aligned regions length for each pair of proteins.

3.2 Classification

Similarly to viral fusogens, we consider that protein candidates for fusion capacity in
other biological models may exist as a part of a precursor. For this reason, besides
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Fig. 3. Viral fusion proteins processing. In this example HIV is presented for its simplicity. Env
gene is synthesized as a non-functional precursor protein (VFP) containing a surface protein (SU)
and a transmembrane protein (TM). Both proteins are cleaved at the cleavage site (CS) to form
an active fusion protein. The released TM is a Class I viral fusion protein. The transmembrane
domain separates the protein into an intraviral domain and an ectodomain (VF). The latter carries
out the fusogenic activity of the virus.

evaluating the metric when classifying a group of Class I and Class II VFs, we will also
evaluate the metric when classifying a group of Class I and Class IT VFPs.

Another approach consists of training a One-class SVM (OC-SVM) classifier with
Class I VFs and classifying a group of VFs or VFPs as Class I (positive class) or Class IT
(negative class). This is a first approximation to evaluate the method in order to consider
its application for classifying proteins from other biological models as proteins with
fusogenic capacity (positive class) and no fusogenic capacity (negative class).

4 Data description and experimental results

4.1 Data pre-processing

We obtained the amino acid sequences for the VFPs available in the public database
UniProt [18]. We selected those proteins labeled as Class I viral fusion protein or Class
II viral fusion protein. We obtained 27846 Class I and 1800 Class II sequences, with
variable lengths from 446 to 1376 amino acids. We extracted the VF from each protein
using the annotations available in UniProt. The lengths varied from 136 to 584 amino
acids. From here on, we worked with the VFP and the VF in parallel.

Knowing the redundancy of sequences in UniProt, as a previous step for secondary
structure prediction, the sequences were clustered with 99% identity with CD-HIT
tool [19]. Thus, we obtained 1769 representative sequences of Class I viral fusogens,
and 1103 Class II fusogens. We selected randomly 100 Class I VFs and 100 Class II
VFs. We also selected randomly another 100 Class I VFs , 100 Class II VFs, and their
corresponding 100 Class I VFPs and 100 Class II VFPs.

For these 600 sequences the secondary structure predictions were calculated with
Psipred, using the HHSuite package [20]. This method considers a multiple sequence
alignment for each amino acid sequence to improve the accuracy, as evolution provides
a closer description of structural tendencies. Finally, we computed similarity matrices
for the proposed metric. We analyzed the similarity matrices obtained for a constant
gap penalty with values between 0 and -5, and chose to work with a penalty value of
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Table 1. Accuracies obtained for VFs and VFPs classification.

Classification 1-NN 3-NN 7-NN SVM OC-SVM
VFs 98.5 98.5 97.5 99.0 92.0
VFPs 98.5 97.5 955 90.5 69.5

-1. This value maximizes the score when comparing sequences of the same class, and
minimizes it when comparing different classes.

Training and classification SVM method has been widely used in biological se-
quences analysis. This method uses kernel functions, mapping the problem into a high-
dimensional space. This feature allows the construction of a hyperplane that has the
highest separation between two classes in the transformed space.
A distance between protein sequences was obtained from the computed similarity
with the kernel [15]:
k(x,y) = exp(¥d(X,Y)) . @)

We worked with LIBSVM package [21] for Python. LIBSVM can generate a classifier
from the precalculated kernel and estimate the performance.

VFs classification training with two classes We trained a SVM classifier with a set
of Class I and Class II VFs. The classification was performed with another set of Class
I and Class II VFs . The performance of the classifier depends on parameters C and
Y. The parameter C affects the flexibility of the classification, allowing some errors,
but also penalizing. The parameter ¥ establishes how far the influence of a sample can
reach. The best combination of C and y was selected using a grid search with 10-fold
cross-validation, with C values between 21> and 2!3, and 7y values between 5 x 10~#
and 5 x 10% with uniform intervals.

We selected as optimal parameters C = 271> and y = 5.4 x 10!, For these parame-
ters, the classification accuracy for Class I and Class II fusogens was 99.0%.

To obtain a second evaluation of the proposed metric, we classified the set of VFs
using k-NN as the classification method, for 1, 3 and 7 NNs. The classification accuracy
was 98.5%, 98.5% and 97.5% respectively (Table 1).

VFs classification training with a positive class SVM classifiers are based in training
with samples belonging to two classes (e.g. positive and negative). However, in some
situations there are only positive samples for training. This is the case of the problem
suggested in this work, as we have a set of training proteins known to be fusogenic,
and we intend to select fusogen candidates from a diverse set of proteins. Given the
characteristics of the candidate proteins set and the virtually infinite variability a protein
can present, it is not possible to create a representative negative samples. Scholkopf et
al. [22] described the one-class classification method that allows to train a model with
just positive samples.

For this reason, we trained an OC-SVM classifier with Class I VFs as positive sam-
ples. We evaluated the classification of a Class I VFs set (distinct from the training set)
and a Class II VFs set. For this part, we also used LIBSVM package. The same kernel
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was applied to the data, and the best combination of parameters was chosen. In this
case, parameter Vv substitutes parameter C. The meaning of parameter v is analogous to
C meaning, but the values should be between 0 and 1. Similarly to previous part, the
best combination of parameters v and Y were selected using a grid search with 10-fold
cross-validation, with v values between 0.05 and 1, and vy values between 5 x 10~* and
5 x 10% with uniform intervals.

We selected as optimal parameters v = 0.05 and Y= 5.4 x 10~!. For these parame-
ters, the classification accuracy for Class I and Class I VFs was 92.0% (Table 1).

VFPs classification training with two classes In order to evaluate the modified al-
gorithm performance for local aligments, the SVM classifier was evaluated classifiyng
a group of VFPs. It was trained with the same two classes used previously. The clas-
sification accuracy for Class I and Class II VFPs was 90.5%. The k-NN classification
accuracy for 1, 3 and 7 NNs was 98.5%, 97.5% and 95.5% respectively (Table 1).

VFPs classification training with a positive class The classification of Class I and
Class II VFPs when training only with Class I VFs resulted in an accuracy of 69.5%
(Table 1).

5 Conclusions and future work

The developed metric, based on SSEA allowed the satisfactory classification of VFs us-
ing the three proposed methods (k-NN, SVM y OC-SVM). The classification of VFPs
using k-NN gave a similar accuracy as the obtained for VFs classification. We also ob-
tained an acceptable accuracy when classifying VFPs using a SVM model. However,
the performance is reduced considerably when classifying VFPs using an OC-SVM
model. It is clear that a reduction of the accuracy is expected since this is the most
challenging case where the classifier is trained with VFs and tested with VFPs, and the
reduction for the two classes SVM is already greatly reduced. However, the reduction is
too abrupt, and further analysis of the dissimilarities between classes would help to un-
derstand the reasons of this reduction. In spite of the SVM and OC-SVM classification
results, the metric by itself appears to accomplish the objective according to the results
obtained for 1-NN classification.

This work was performed on a reduced set, selected randomly from an original set of
VFs and VFPs obtained from UniProt. We discarded a significant subset of sequences
from the original set as those sequences did not have annotations for the cleavage of
VEPs. The first step when reviewing the metric should be to expand the set.

On the other hand, we propose to work in detail on the influence of gap penalties in
the metric. Evaluations not presented in this work showed that gap penalty value does
not have influence on the performance of k-NN classifiers, but does have influence on
SVM and OC-SVM classifiers. In this work, we used a constant gap system, so the gap
penalty value is always the same. It would be interesting to evaluate the performance of
the metric when working with a linear gap system (dependent on the length of the gap)
or with affine gap penalty, in which the gap opening is penalized differently than gap
extension.
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The set-up of this method could make possible the identification of unknown viral
fusogens from the genome or proteome of enveloped viruses. It could also be used to
identify proteins with fusogenic capacity in different biological models.
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