Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43496
Cómo citar
Título: | Efficient sequential compression of multichannel biomedical signals |
Autor: | Capurro, Ignacio Lecumberry, Federico Martín Menoni, Alvaro Ramírez Paulino, Ignacio Rovira, Eugenio Seroussi, Gadiel |
Tipo: | Preprint |
Palabras clave: | Multi-channel signal compression, Electroencephalogram compression, Electrocardiogram compression, Lossless compression, Near-lossless compression, Low-complexity |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2017 |
Resumen: | This work proposes lossless and near-lossless compression algorithms for multi-channel biomedical signals. The algorithms are sequential and efficient, which makes them suitable for low-latency and low-power signal transmission applications. We make use of information theory and signal processing tools (such as universal coding, universal prediction, and fast online implementations of multivariate recursive least squares), combined with simple methods to exploit spatial as well as temporal redundancies typically present in biomedical signals. The algorithms are tested with publicly available electroencephalogram and electrocardiogram databases, surpassing in all cases the current state of the art in near-lossless and lossless compression ratios. |
Descripción: | Los resultados preliminares de este trabajo se presentaron en la European Signal Processing Conference (EUSIPCO 2014), Lisboa, Portugal, 2014. |
Citación: | Capurro, I, Lecumberry, F, Martín, Á, Ramírez, I, Rovira, E, Seroussi, G. "Efficient sequential compression of multichannel biomedical signals" [Preprint] Publicado en: IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 4, 2017. doi: 10.1109/JBHI.2016.2582683. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CLMRRS17.pdf | 994,55 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons