
1

Efficient sequential compression of multi-channel
biomedical signals

Ignacio Capurro, Federico Lecumberry, Member, IEEE, Álvaro Martı́n, Ignacio Ramı́rez, Member, IEEE, Eugenio
Rovira and Gadiel Seroussi, Fellow, IEEE

Abstract—This work proposes lossless and near-lossless com-
pression algorithms for multi-channel biomedical signals. The al-
gorithms are sequential and efficient, which makes them suitable
for low-latency and low-power signal transmission applications.
We make use of information theory and signal processing tools
(such as universal coding, universal prediction, and fast online
implementations of multivariate recursive least squares), com-
bined with simple methods to exploit spatial as well as temporal
redundancies typically present in biomedical signals. The algo-
rithms are tested with publicly available electroencephalogram
and electrocardiogram databases, surpassing in all cases the
current state of the art in near-lossless and lossless compression
ratios.

Index Terms—multi-channel signal compression, electroen-
cephalogram compression, electrocardiogram compression, loss-
less compression, near-lossless compression, low-complexity

I. INTRODUCTION

Data compression is of paramount importance when dealing
with biomedical data sources that produce large amounts of
data, due to the potentially large savings in storage and/or
transmission costs. Some medical applications involve real-
time monitoring of patients and individuals in their everyday
activities (not confined to a bed or chair). In such contexts,
wireless and self-powered acquisition devices are desirable,
imposing severe power consumption restrictions that call for
efficient bandwidth use and simple embedded logic.

The requirements imposed by these applications, namely,
low-power, and efficient on-line transmission of the data,
naturally lead to a requirement of low-complexity, and low-
latency, compression algorithms. Also, as it is typical in
medical applications, data acquired for clinical purposes is
often required to be transmitted and/or stored without or at
worst with very small distortion with respect to the data that
was acquired by the sensors. This in turn leads to a need
for lossless or near-lossless algorithms, where every decoded
sample is guaranteed to differ by up to a preestablished bound
from the original sample (in the lossless case, no differences
are allowed).

A. Background on biomedical signal compression

Most lossless biomedical signal compression methods (both
single- and multi-channel) are based on a predictive stage for

This work was funded by CSIC, Universidad de la República.
Preliminary results of this work were presented at the 2014 European Signal

Processing Conference (EUSIPCO 2014), Lisbon, Portugal, 2014
Authors are with Universidad de la República, Montevideo, Uruguay

(e-mails: {icapurro, fefo, almartin, nacho, exavier}@fing.edu.uy, and
gseroussi@ieee.org)

removing temporal and/or spatial correlations. This produces
a predicted signal, which is then subtracted from the original
signal to obtain a prediction error that is encoded losslessly [1],
[2], [3], [4], [5]. Among prediction methods, typical choices
include linear predictors [1], [3], and neural networks [2]. Af-
ter correlation is (hopefully) removed by the prediction stage,
residuals are encoded according to some statistical model.
Typical choices include arithmetic, Huffman, and Golomb
encoding. An example of a non-predictive scheme, based on a
lossless variant of the typical transform-based methods used in
lossy compression for temporal decorrelation, is given in [6].

When considering the multi-channel case, a spatial decorre-
lation stage is generally included to account for inter-channel
redundancy. In this case, most lossless and near-lossless
algorithms found in the literature resort to transform-based
approaches to remove spatial redundancy. This includes [6],
and the works [7], [8], where a lossy transform is used for
simultaneous spatio-temporal decorrelation, and the residuals
are encoded losslessly or near-losslessly. In [7] this is done
using a wavelet transform, whereas [8] uses a PCA-like de-
composition. As an example of a non-transform based method,
the work [9] decorrelates a given channel by subtracting,
from each of its samples, a fixed linear combination of the
samples from neighboring electrodes corresponding to the
same time slot. Another example is the MPEG-4 audio lossless
coding standard [10] (ALS), which has also been applied for
biomedical signal compression [11]. In this case, a linear
prediction error is obtained for each channel, and the inter-
channel correlation is exploited by subtracting, from each
prediction error in a target channel, a linear combination of
prediction errors of a reference channel. The signal is divided
into blocks and for each block, two passes are performed
through the data. In the first pass, the pairs of target-reference
channel and the coefficients for intra and inter channel linear
predictions are obtained and described to the decoder; the data
itself is encoded in the second pass.

In relation to the objectives posed for this work, we note
that algorithms such as those described in [6], [4], [7],
[8] require a number of operations that is superlinear in the
number of channels. Some methods, including [6], [3], [4],
[7], [8], [10] also have the drawback of having to perform
more than one pass over the input data. Arithmetic coders such
as those used in [3], [4], [7], [8] are computationally more
expensive than, for example, a Golomb coder [12], which is
extremely simple and thus popular in low-power embedded
systems. Finally, methods such as [4], [7], [8] split the signal
into an approximate transform and a residual, and perform an

2

exhaustive search among several candidate splittings, where
each candidate splitting is tentatively encoded, thus further
increasing the coding time.

B. Contribution

In the present work we propose a sequential, low-latency,
low-complexity, lossless/near-lossless compression algorithm.
The algorithm uses a statistical model of the signals, designed
with the goal of exploiting, simultaneously, the potential re-
dundancy appearing across samples at different times (tempo-
ral redundancy) and the redundancy among samples obtained
from different channels during the same sampling period
(spatial redundancy). The design relies on well-established
theoretical tools from universal compression [13], [14] and
prediction [15], combined with advanced signal processing
tools [16], to define a sequential predictive coding scheme
that, to the best of our knowledge, has not been introduced
before. The results are backed by extensive experimentation
on publicly available electroencephalogram (EEG) and elec-
trocardiogram (ECG) databases, showing the best lossless and
near-lossless compression ratios for these databases in the state
of the art (in the near-lossless case, compression ratios are
compared for the same distortion level under a well defined
metric).

The execution time of the proposed algorithm is linear in
both the number of channels and of time samples, requir-
ing an amount of memory that is linear in the number of
channels. The algorithm relies on the observation that inter-
channel redundancy can be effectively reduced by jointly
coding channels generated by sensors that are physically close
to each other. The specific statistical model derived from
this observation is detailed in Section II, and an encoding
algorithm based on this model is defined in Section III. In the
usual scenario in which the sensor positions of the acquisition
system are known, the proposed algorithm, referred to as
Algorithm 1, defines a simple and efficient joint coding scheme
to account for inter-channel redundancy. If these positions
are unknown, we propose, in Section III-C, an alternative
method, implemented in Algorithm 2, to sequentially derive
an adaptive joint coding scheme from the signal data that is
being compressed. This is accomplished by collecting certain
statistics simultaneously with the compression of a segment of
initial samples. During this period, which is usually short (in
general between 1000 and 2000 vector samples), the execution
time and memory requirements are quadratic in the number
of channels. In both scenarios, the proposed algorithms are
sequential (the samples are encoded as soon as they are
received).

In Section IV we provide experimental evidence on the
compression performance of the proposed algorithms, show-
ing compression ratios that surpass the published state-of-
the-art [7], [8], [10]. The compression ratios obtained with
Algorithms 1 and 2 are similar, showing that there is no
significant compression performance loss for lack of prior
knowledge of the device sensor positions. Moreover, Algo-
rithm 2 achieves slightly better compression ratios in some
cases. Final conclusions are discussed in Section V.

C. Summary of the contribution

In summary, our contribution consists of two algorithms,
whose properties are summarized below:
• Sequential/online. Data is processed and transmitted as it

arrives. Note that, of the algorithms that report the current
best compression rates in the literature, only [10] can be
applied online. The rest require multiple passes over the
data.

• Low latency. Since the algorithms are sequential, the
only latency involved is the CPU time required to process
a scalar sample. The latency of the only competing
method which is online [10] is 2048 time samples, which
represents a minimum of two seconds if operating at
1 kHz.

• Compression performance. Both algorithms surpass the
current state of the art in lossless compression algorithms,
and also in near-lossless compression algorithms for the
maximum absolute error (M*AE) distortion measure.

• Low complexity. This is especially true for Algorithm 1,
which requires a fixed, small number of computations per
scalar sample. The complexity of Algorithm 2 is quadratic
in the number of channels during a small number of
initial samples (approximately 1000, see Table IV in
Section IV), becoming identical to that of Algorithm 1
afterwards.

II. STATISTICAL MODELING OF BIOMEDICAL SIGNALS FOR
PREDICTIVE CODING

A. Biomedical signals

An electroencephalogram (EEG) is a signal obtained
through a set of electrodes placed on the scalp of a person
or animal. Each electrode measures the electrical activity pro-
duced by the neurons in certain region of the brain, generating
a scalar signal that is usually referred to as a channel. EEGs
are commoly used in some clinical diagnostic techniques,
and also find applications in biology, medical research, and
brain-computer interfaces. For most clinical applications, the
electrodes are placed on the scalp following the international
10–20 system [17], or a superset of it when a higher spatial
resolution is required. Depending on the specific goal, an EEG
can be comprised of up to hundreds of channels (for example,
our experiments include cases with up to 118 channels).
Modern electroencephalographs produce discrete signals, with
sampling rates typically ranging from 250Hz to 2kHz and
sample resolutions between 12 and 16 bits per channel sample.

An electrocardiogram (ECG) is a recording of the heart
electrical activity through electrodes that are usually placed
on the chest and limbs of a person. A lead of an ECG is a
direction along which the heart depolarization is measured.
Each of these measures is determined by linearly combining
the electrical potential difference between certain electrodes. A
standard 12-lead ECG record [18], for example, is comprised
of 12 leads named i, ii, iii, aVR, aVL, aVF, v1, . . . , v6, which
are obtained from 10 electrodes. Lead i, for example, is the
potential difference registered by electrodes in the left and
right arms. In the description of our algorithm in the sequel we

3

will use the term channel generically, with the understandong
that it should be interpreted as lead in the case of ECGs.

B. Predictive coding

We consider a discrete time m-channel signal, m > 1. We
denote by xi(n) the i−th channel (scalar) sample at time in-
stant n, n ∈ N, and we refer to the vector (x1(n), . . . , xm(n))
as the vector sample at time instant n. We assume that all
scalar samples are quantized to integer values in a finite
interval X .

The lossless encoding proposed in this paper follows a
predictive coding scheme, in which a prediction x̂i(n) is
sequentially calculated for each sample xi(n), and this sample
is described by encoding the prediction error, εi(n) , xi(n)−
x̂i(n). The sequence of sample descriptions is causal, i.e., the
order in which the samples are described, and the definition of
the prediction x̂i(n), are such that the latter depends solely on
samples that are described before sample xi(n). Thus, a de-
coder can sequentially calculate x̂i(n), decode εi(n), and add
these values to reconstruct xi(n). A near-lossless encoding is
readily derived from this scheme by quantizing the prediction
error εi(n) to a value ε̃i(n) that satisfies |εi(n)− ε̃i(n)| ≤ δ,
for some preset parameter δ. After adding ε̃i(n) to x̂i(n),
the decoder obtains a sample approximation, x̃i(n), whose
distance to xi(n) is at most δ. In this case, the prediction
x̂i(n) may depend on the approximations x̃i(n

′), n′ < n,
of previously described samples, but not on the exact sample
values, which are not available to the decoder.

C. Statistical modeling

The aim of the prediction step is to produce a sequence
of prediction errors that, according to some preestablished
probabilistic model, exhibit typically a low empirical entropy,
which is then exploited in a coding step to encode the
data economically. In our encoder we use an adaptive linear
predictor. We model prediction errors by a two-sided geometric
distribution (TSGD), for which we empirically observe a good
fitting to the tested data, and which can be efficiently encoded
with adaptive Golomb codes [12], [13]. The TSGD is a discrete
distribution defined over the integers Z as,

P (x; θ, d) =
1− θ

θ1−d + θd
θ|x+d| ,

where 0 < θ < 1 is a scale parameter and 0 ≤ d < 1/2 is a
bias parameter. We refer the reader to [13] for details on the
online adaptation of the TSGD parameters and the correspond-
ing optimal Golomb code parameters. For the following dis-
cussion, it suffices to note that, under the TSGD distribution,
the empirical entropy of an error sequence, ε(1) , . . . , ε(N),
of length N , is roughly proportional to log2 MAE(ε), where
MAE stands for Mean Absolute Error and is defined as,

MAE(ε) =

N∑
n=1

|ε(n)|. (1)

As defined, log2 MAE provides an approximate measure of
the relative savings in terms of bits per sample (bps) obtained
when using different prediction schemes. Below, we discuss

TABLE I: Performance of different prediction schemes in
terms of log2 MAE on database DB1a.

Model log2 MAE

AR, order 3 1.883
MVAR, order 3 1.763
MVAR, order 6 1.474
MVAR2, order 3 1.854
MVARn

2 , order 3 1.351

the considerations that lead to our specific choice of prediction
scheme. In this discussion, and in the sequel, we refer to vari-
ous databases of digitized EEG recordings (e.g., DB1a, DB2a,
DB2b, etc.) used in our experiments; detailed descriptions of
these databases are provided in Section IV.

In an (independent channel) autoregressive model (AR) of
order p, p ≥ 1, every sample xi(n), n > p, is the result of
adding independent and identically distributed noise to a linear
prediction

x̂pi (n) =

p∑
k=1

ai,kxi(n− k) , 1 ≤ i ≤ m, (2)

where the real coefficients ai,k are model parameters, which
determine, for each channel i, the dependence of xi(n) on
previous samples of the same channel. The prediction in a
multivariate autoregressive model (MVAR) for a sample from
a channel i, 1 ≤ i ≤ m, is

x̂pi (n) =

m∑
j=1

p∑
k=1

ai,j,kxj(n− k) , (3)

where now the model is comprised of pm2 parameters, ai,j,k,
which define, for each i, a linear combination of past samples
from all channels j, 1 ≤ j ≤ m. Consequently, this model
may potentially capture both time and space signal correlation.
Indeed, for EEG data, we experimentally observe that the
MAE, where model parameters are obtained as the solution to
a least squares minimization, is in general significantly smaller
for an MVAR model than an AR model. For instance, Table I
shows a potential saving of 0.12 bits per sample (bps) on
average (over all files and channels of the database DB1a) by
using an MVAR model of order 3 instead of an AR model of
the same order.

Some EEG signals, however, consist of up to hundreds of
channels and, therefore, the number of model parameters in (3)
may be very large. As a consequence, since these parameters
are generally unknown a priori, MVAR models may suffer
from a high statistical model cost (i.e., the cost of either
describing or adaptively learning the model parameters) [14],
which may offset in practice the potential code length savings
shown in Table I. As a compromise, one could use an MVAR
based on a subset of the channels. For example, Table I
shows results for a model, referred to as MVAR2, in which
the prediction x̂pi (n) is a linear combination of the p most
recent past samples from just two channels, i, `, where ` is a
channel whose recording electrode is physically close to that of
channel i. The result for MVAR2 in the table shows that adding
the second channel to the predictor indeed reduces the MAE;
however, the gains over an AR of the same order are modest.
On the other hand, we observed that considerably more gains

4

0

5

1

2

3

4

7

8

6

9

14

13

15

16

10

17

25

18

11

19
12

20

21

23

24

26

27

28

31

30

32

22

33

34

35

45

36

37

38

29

39

48

56

47

65

55

57

75

64

63

76
40

41

42

43

44

52

60

51

69

59

78

50

68

87

46

74

54

73

84

62

83

72

71

93

58

49

67

66

77

86

53

82

61

80

92

70

89

100

79

98

94

85

88
97

104

95

105

109

103

106

111

81

90

99

107

110

102

114

91

112

113

96

116

108

115

101

117

Root

Fig. 1: A graphical representation of the coding tree used
in our experiments with EEG files from databases DB2a and
DB2b (see Section IV).

are obtained if, besides past samples from channels i, `, we
also use the sample at time instant n of channel ` to predict
xi(n) (assuming causality is maintained, as will be discussed
below), i.e.,

x̂pi (n) =

p∑
k=1

ai,kxi(n− k) +

p∑
k=0

bi,kx`(n− k) , (4)

1 ≤ i, ` ≤ m, i 6= `. We refer to this scheme as MVARn2 .
As seen on Table I, MVARn2 , with p = 3, surpasses the
performance of an MVAR model of order 3 by over 0.4bps,
and even that of an MVAR model of order 6 by 0.1bps, with
a much smaller model cost. In light of these results, MVARn2
was adopted as the prediction scheme in our compression
algorithm.

III. ENCODING

In this section we define the proposed encoding scheme.
Since the sequence of sample descriptions must be causal with
respect to the predictor, not all predictions x̂i(n) can depend
on a sample at time n. Hence, in Subsection III-A we define
an order of description that obeys the causality constraint, and
also minimizes the sum of the physical distances between
electrodes of channels i, `, where x̂i(n) depends on x`(n),
over all channels i except the one whose sample is described
first. The prior assumption here is that the correlation between
the signals of two electrodes will tend to increase as their
physical distance decreases. In Subsection III-B we present
the encoding process in full detail and in Subsection III-C
we generalize the encoding scheme to the case in which the
electrode positions are unknown. Finally, in Subsection III-D
we present a near-lossless variant of our encoder. Experimental
results are deferred to Section IV.

A. Definition of channel description order for known electrode
positions

To define a channel description order we consider a tree,
T , whose set of vertices is the set of channels, {1, . . . ,m}.
We refer to T as a coding tree. Specifically, in the context

for n = 1, 2, . . . do1

Let (r, i) be edge e1 of T2

x̂r(n) = fr(xr(n− 1),xi(n− 1))3

Encode εr(n)4

for k = 1, . . . ,m− 1 do5

Let (`, i) be edge ek of T6

x̂i(n) = fi(xi(n− 1),x`(n))7

Encode εi(n)8

end9

end10
Algorithm 1: Coding algorithm with fixed coding tree. See
sections III-A and III-B for notation and definitions.

in which the electrode positions are known, we let T be
a minimum spanning tree [19], [20] of the complete graph
whose set of vertices is {1, . . . ,m}, and each edge (i, j)
is weighted with the physical distance between electrodes
of channels i, j. In other words, the sum of the distances
between electrodes of channels i, j, over all edges (i, j) of
T , is minimal among all trees with vertices {1, . . . ,m}. We
distinguish an arbitrary channel r as the root,1 and we let
the edges of T be oriented so that there exists a (necessarily
unique) directed path from r to every other vertex of T . Since
a tree has no cycles, the edges of T induce a causal sequence
of sample descriptions, for example, by arranging the edges
of T , e1, . . . , em−1, in a breadth-first traversal [21] order.
An example of a coding tree used in our EEG compression
experiments is shown in Figure 1. After describing a root
channel sample, all other samples are described in the order
in which their channel appear as the destination of an edge
in the sequence e1, . . . , em−1. Notice that since T depends
on the acquisition system but not on the signal samples, this
description order may be determined off-line. The sample
xr(n) is predicted based on samples of time up to n−1 of the
channels r, i, where (r, i) is the edge e1; all other predictions,
x̂i(n), i 6= r, depend on the sample at time n of channel `
and past samples of channels `, i, where (`, i) is an edge of
T .

B. Coding algorithm

Algorithm 1 summarizes the proposed encoding scheme. We
let xi(n) = xi(1), . . . , xi(n) denote the sequence of the first
n samples from channel i, and we let fi be an integer valued
prediction function to be defined.

We use adaptive Golomb codes [12] for the encoding of
prediction errors in steps 4 and 8. Golomb codes are prefix-free
codes on the integers, characterized by very simple encoding
and decoding operations implemented with integer manipula-
tions without the need for any tables; they were proven optimal
for geometric distributions [22], and, in appropriate combina-
tions, also for TSGDs [23]. A Golomb code is characterized
by a positive integer parameter referred to as its order. To use
Golomb codes adaptively in our application, an independent

1The specific selection of the root channel r did not have any significant
impact on the results of our experiments; for all databases reported in
Section IV, the difference between the best and worst root choices was always
less than 0.01bps.

5

P samples

Predictor

Predictor

Predictor

Weighted
average

...

...

...

Fig. 2: A representation of the weighted average predictor defined in (8), for i 6= r.

set of prediction error statistics is maintained for each channel,
namely the sum of absolute prediction errors and the number
of encoded samples. The statistics collected up to time n− 1
determine the order of a Golomb code, which is combined with
a Rice mapping [24] from integers to nonnegative integers
to encode the prediction error at time n. Both statistics are
halved every F samples to make the order of the Golomb code
more sensitive to recent error statistics and adapt quickly to
changes in the prediction performance. Prediction errors are
reduced modulo |X | and long Golomb code words are escaped
so that no sample is encoded with more than a prescribed
constant number of bits, τ . This encoding of prediction errors
is essentially the same as the one used in [25]. In particular,
only Golomb code orders that are powers of two are used.

To complete the description of our encoder, we next define
the prediction functions, fi, 1 ≤ i ≤ m, which are used in
steps 3 and 7 of Algorithm 1. For a model order p, we let
api (n) = {ai,k(n), bi,k(n)} denote the set of coefficient values,
ai,k, bi,k, that, when substituted into (4), minimize the total
weighted squared prediction error up to time n

Epi (n) =

n∑
j=1

λn−j
(
xi(j)− x̂pi (j)

)2
, (5)

where λ, 0 < λ < 1, is an exponential decay factor parameter.
This parameter has the effect of preventing Epi (n) from
growing unboundedly with n, and of assigning greater weight
to more recent samples, which makes the prediction algorithm
adapt faster to changes in signal statistics. A sequential linear
predictor of order p uses the coefficients api (n− 1) to predict
the sample value at time n as2

ẋpi (n)=

p∑
k=1

ai,k(n−1)xi(n−k)+

p∑
k=0

bi,k(n−1)x`(n−k) , (6)

and, after having observed xi(n), updates the set of co-
efficients from api (n − 1) to api (n) and proceeds to the

2Notice that, compared to (4), we use a different notation for the predictors
in (6) as these will be combined to obtain the final predictor x̂ used in
Algorithm 1.

next sequential prediction. This determines a total weighted
sequential absolute prediction error defined as

Epi (n) =

n∑
j=1

λn−j
∣∣∣xi(j)− ẋpi (j)∣∣∣ . (7)

Notice that each prediction ẋpi (j) in (7) is calculated with a
set of model parameters, api (j − 1), which only depends on
samples that are described before xi(j) in Algorithm 1. These
model parameters vary, in general, with j (cf. (5)).

Various algorithms have been proposed to efficiently cal-
culate api (n) from api (n − 1) simultaneously for all model
orders p, up to a predefined maximum order P . We resort, in
particular, to a lattice algorithm (see, e.g., [16] and references
therein). This calculation requires a constant number of scalar
operations for fixed P , which is of the same order (quadratic in
P) as the number of scalar operations that would be required
by a conventional least square minimization algorithm to com-
pute the single set of model parameters aPi (n) for the largest
model order P . Also, we notice that using a lattice algorithm,
the coefficients api (n − 1) involved in the definition (6) of
ẋpi (n) can be sequentially computed simultaneously for all
p, 0 ≤ p ≤ P . Therefore, following [15], we do not fix
nor estimate any specific model order but we instead average
the predictions of all sequential linear predictors of order
p, 0 ≤ p ≤ P , exponentially weighted by their prediction
performance up to time n − 1. Specifically, for i 6= r, we
define

fi(xi(n− 1),x`(n)) =

⌊
1

M

P∑
p=0

µp(n)ẋpi (n)

⌉
, (8)

where b·e denotes rounding to the nearest integer within the
quantization interval X ,

µp(n) = exp{−1

c
Epi (n− 1)} , (9)

M is a normalization factor that makes µp(n)
M sum up to

unity with p, Epi (n− 1) is defined in (7), and c is a constant
that depends on X [15]. If the weights µp are exponential

6

Fig. 3: Stacked plot of the weights µp(n) for the first 300
samples of a 160Hz EEG channel from database DB1a.

Fig. 4: Absolute prediction error for the first 300 samples of
the same EEG channel of Figure 3.

functions of the sequential squared prediction error, it is shown
in [15] that the per-sample normalized squared prediction error
of this predictor is asymptotically as small as the minimum
normalized sequential squared prediction error among all
linear predictors of order up to P . In our experiments, the
compression ratio is systematically improved if the weights
are defined instead as exponential functions of the sequential
absolute prediction error as in (9). Figure 2 shows a schematic
representation of the predictor fi defined in (8). The definition
of fr is analogous, removing the terms corresponding to k = 0
from (4) and (6), and letting the summation index p in (8) take
values in the range 1 ≤ p ≤ P + 1.

Figure 3 shows the evolution of the weights µp(n), 0 ≤
p ≤ P , during the initial segment of an EEG channel signal
taken from database DB1a. Small model orders, which adapt
fast, receive high weights for the very first samples. As n
increases, the performance of large order models improves,
and these orders gain weight. Figure 4 shows the absolute
prediction errors for the same EEG channel.

The overall encoding and decoding time complexity of the
algorithm is linear in the number of encoded samples. Indeed,
a Golomb encoding over a finite alphabet requires O(1)

operations and, since the set of predictions ẋpi (n), 0 ≤ p ≤ P ,
can be recursively calculated executing O(1) scalar operations
per sample [16], the sequential computation of fi requires
O(1) operations per sample. Regarding memory requirements,
since each predictor and Golomb encoder requires a constant
number of samples and statistics, the overall memory com-
plexity of a fixed arithmetic precision implementation of the
proposed encoder is O(m).

C. Definition of channel description order for unknown elec-
trode positions

When the electrode positions are unknown, we derive the
coding tree T from the signal itself. To this end, we define
an initial tree, T0, with an arbitrary root channel r and a
set of directed edges {(r, i) : 1 ≤ i ≤ m, i 6= r} (a
“star” tree). The first B vector samples, (x1(n), . . . , xm(n)),
1 ≤ n ≤ B, are encoded with Algorithm 1 setting T = T0,
where B is a fixed block length. We update T every B vector
samples until we reach a stoping time, ns, to be defined. For
each pair of channels (`, i), i 6= `, i 6= r, we calculate the
prediction fi(xi(n−1),x`(n)) of xi(n), defined in (8), and we
determine the code length, C`,i(n), of encoding the prediction
error xi(n) − fi(xi(n − 1),x`(n)) for all n, 1 ≤ n ≤ ns.
Notice that only the predictions fi(xi(n − 1),x`(n)) such
that (`, i) is an edge of T are used for the actual encoding;
the remaining predictions and code lengths are calculated for
statistical purposes with the aim of determining a coding tree
for the next block of samples.

We define a directed graph Gn with a set of vertices
{1, . . . ,m} and a set of edges {(`, i) : i 6= `, i 6= r}, where
each edge (`, i) is weighted with the average code length
C̄`,i(n) = 1

n

∑n
i=1 C`,i(n). Let T̂ (Gn) be a directed tree

with the same vertices as Gn, root r, and a subset of the
edges of Gn with minimum weight sum, i.e., T̂ (Gn) is a
minimum spanning tree of the directed graph Gn. Notice that,
by the definition of Gn, setting T = T̂ (Gn) in Algorithm 1
yields the shortest code length for the encoding of the first
n vector samples among all possible choices of a tree T
with root r. However, to maintain sequentiality, T can only
depend on samples that have already been encoded. Therefore,
for each n that is multiple of the block length B, we set
T = T̂ (Gn) and use this coding tree to encode the next block,
(x1(i), . . . , xm(i)), n < i ≤ n + B. This sequential update
of T continues until a stopping condition is reached at some
time ns; all subsequent samples are encoded with the same
tree T̂ (Gns

).
In our experiments, as detailed in Section IV, stopping

when the compression stabilizes yields small values of ns and
similar compression ratios as Algorithm 1 with a fixed tree
as defined in Section III-A. Specifically, for the i-th block of
samples, i > 0, let ci be the sum of the edge weights of the
tree T̂ (GiB), i.e., ci is the average code length that would
be obtained for the first iB vector samples with Algorithm 1
using the coding tree determined upon encoding the i-th block
of samples. We also define ∆i = |ci − ci−1|, i > 1, and we
let ∆̄i be the arithmetic mean of the last V values of ∆, i.e.,
∆̄i = V −1

∑V−1
k=0 ∆i−k, where V is some small constant and

7

i > V . We define ns as

ns = min{Ns} ∪ {iB : i > V, ∆̄i < γci} , (10)

where the constant Ns establishes a maximum for ns, and γ
is a constant.

Set T = T01

Initialize G0 with all edge weights equal to zero2

Set update = true3

for n = 1, 2, . . . do4

Encode (x1(n), . . . , xm(n)) as in Algorithm 15

if update then6

Compute Gn from Gn−1 and C`,i(n), i 6= `, i 6= r7

if n is multiple of B then8

Set T = T̂ (Gn)9

if Stopping condition is true then10

Set update = false11

end12

end13

end14

end15
Algorithm 2: Coding algorithm with periodic updates of T .
See Section III-C for notation and definitions.

The proposed encoding is presented in Algorithm 2. Step 7
of Algorithm 2 clearly requires O(m2) operations and O(m2)
memory space. Step 9 also requires O(m2) operations and
memory space using efficient minimum spanning tree con-
struction algorithms over directed graphs [26], [27], [28].
Thus, compared to Algorithm 1, whose time and space com-
plexity depend linearly on m, steps! 7-12 of Algorithm 2
require an additional number of operations and memory
space that are quadratic in m. These steps, however, are
only executed until the stopping condition is true, which in
practice is usually a relatively small number of operations (see
Section IV).

D. Near-lossless encoding

In a near-lossless setting, steps 4 and 8 of Algorithm 1
encode a quantized version, ε̃i(n), of each prediction error,
εi(n), defined as

ε̃i(n) = sign(εi(n))

⌊
|εi(n)|+ δ

2δ + 1

⌋
, (11)

where bzc denotes the largest integer not exceeding z. This
quantization guarantees that the reconstructed value, x̃i(n) ,
x̂i(n) + ε̃i(n)(2δ + 1), differs by up to δ from xi(n). All
model parameters and predictions are calculated with x̃i(n)
in lieu of xi(n), on both the encoder and the decoder side.
Thus, the encoder and the decoder calculate exactly the same
prediction for each sample, and the distortion originated by
the quantization of prediction errors remains bounded in mag-
nitude by δ (in particular, it does not accumulate over time).
The code lengths C`,i(n) in Algorithm 2 are also calculated
for quantized versions of the prediction errors.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

A. Datasets

We evaluate our algorithms by running lossless (δ = 0) and
near-lossless (δ > 0) compression experiments over the files
of several publicly available databases, described below. In the
desciption, bps stands for “bits per scalar sample”.
• DB1a and DB1b [29], [30] (BCI2000 instrumentation

system): 64-channel, 160Hz, 12bps EEG of 109 sub-
jects using the BCI2000 system. The database consists
of 1308 2-minute recordings of subjects performing a
motor imagery task (DB1a), and 218 1-minute calibration
recordings (DB1b).

• DB2a and DB2b [31] (BCI Competition III,3 data set
IV): 118-channel, 1000Hz, 16bps EEG of 5 subjects
performing motor imagery tasks (DB2a). The average
duration over the 8 recordings of the database is 39
minutes, with a minimum of almost 13 minutes and
a maximum of almost 50 minutes. DB2b is a 100Hz
downsampled version of DB2a.

• DB3 [32] (BCI Competition IV4): 59-channel, 1000Hz,
16bps EEG of 7 subjects performing motor imagery tasks.
The database is comprised of 14 recordings of lengths
ranging from 29 to 41 minutes, with an average duration
of 35 minutes.

• DB4 [33]: 31-channel, 1000Hz, 16bps EEG of 15 subjects
performing image classification and recognition tasks.
The database consists of 373 recordings with an average
duration of 3.5 minutes, a minimum of 3.3 minutes, and
a maximum of 5.5 minutes.

• DB5 [29], [34] (Physikalisch-Technische Bundesanstalt
(PTB) Diagnostic ECG Database): standard 12-lead,
1000Hz, 16bps ECG. This database consists of 549
recordings taken from 290 subjects, with an average
duration of 1.8 minutes, a minimum of 0.5 minutes and
a maximum of 2 minutes.

For the ECG data we extracted leads i, ii, v1 . . . v6, to
form an 8-channel signal from the standard 12-lead ECG
records [18] (the remaining 4 leads are linear combinations
of these 8 channels). Each of these ECG leads is a linear
combination of electrode measures, which represent heart
depolarization along the direction of a certain vector; the
notion of distance between channels that we use to determine
a coding tree for Algorithm 1 in this case is the angle between
these vectors (see Section III-A).

B. Evaluation procedure

For each database, we compress each data file separately,
and we calculate the compression ratio (CR), in bits per
sample, defined as CR = L/N , where N is the sum of the
number of scalar samples over all files of the database, and L
is the sum of the number of bits over all compressed files of the
database. Notice that smaller values of CR correspond to better
compression performance. The above procedure is repeated for
δ = 0, 1, 2, . . . , 10. Each discrete sample reconstructed by the

3http://bbci.de/competition/iii/
4http://bbci.de/competition/iv/

8

decoder differs by no more than δ from its original value,
which translates to a maximum difference between signal
samples measured in microvolts (µV) that depends on the
resolution of the acquisition system. The scaling factor that
maps discrete sample differences to voltage differences in µV
is 1 for DB1a and DB1b, 0.1 for DB2a, DB2b and DB3,
approximately 0.84 for DB4,5 and 0.5 for DB5.

In the experiments, we set the maximum prediction order
in (8) to P = 7, the exponential decay factor in (5) to λ =
0.99, and the constant c in (9) to a baseline value c = 32
(in fact, to improve numerical stability in (8), we found it
useful to increment [decrement] c whenever the normalization
factor M falls below [above] a certain threshold). For Golomb
codes, we set the upper bound on code word length, τ , to 4
times the number of bits per sample of the original signal,
and the interval between halvings of statistics to F = 16. For
each database, we executed algorithm 1 with δ = 0 and all
possible choices of a root channel r of the coding tree; the
difference between the best and worst root choices was always
less than 0.01bps. All the results reported in the sequel were
obtained, for each database, with the root channel that yielded
the median compression ratio for that database.

C. Compression Results for Algorithm 1

The compression ratio obtained with Algorithm 1 for each
database, as a function of δ, is shown in Table II and plotted
in Figure 5. For δ = 0 (i.e., lossless compression), Table II
also shows, in parenthesis, the compression ratio obtained with
the reference software implementation of ALS,6 configured
for compression rate optimization. For δ > 0, the value in
parenthesis is the best compression reported in [7], [8], where
several compression algorithms are tested with EEG data taken
from databases DB1a, DB2b, and DB3. As Table II shows, the
compression ratios obtained with Algorithm 1 are the best in
all cases. In the near-lossless mode with δ > 0, the algorithm is
designed to guarantee a worst-case error magnitude of δ in the
reconstruction of each sample. For completeness, it may also
be of interest to assess the performance of the algorithm under
other disortion measures (e.g. mean absolute error, or SNR),
for which it was not originally optimized. Such an assessment
is presented in the Appendix.

D. Compression Results for Algorithm 2

For Algorithm 2, we set the block size B equal to 50, and
for the stopping condition in the coding tree T learning stage,
we set V = 5, γ = 0.03, and Ns = 3000 (see Section III-C).
The compression ratio obtained with Algorithm 2, for each
database and for different values of δ, is shown in Table III.
The table also shows, in parenthesis, the percentage relative
difference, CR1−CR2

CR1
× 100, between the compression ratios

CR1 and CR2 obtained with Algorithm 1 and Algorithm 2,
respectively, with respect to CR1.

5The exact value depends on the specific file and channel. The average
value is 0.84 with a standard deviation of 0.043

6http://www.nue.tu-berlin.de/menue/forschung/projekte/beendete projekte/
mpeg-4 audio lossless coding als

0 2 4 6 8 10

δ

1

2

3

4

5

6

7

8

C
o
m

p
re

ss
io

n
 r

a
ti

o
 (

b
p
s)

Distortion-Rate curve in terms of δ

DB1a
DB1b
DB2a
DB2b
DB3
DB4
DB5

Fig. 5: Compression ratio obtained with Algorithm 1 for each
value of δ and all databases. The plots of DB1a, DB1b, and
DB5 overlap.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of compressed vector samples

2.5

3.0

3.5

4.0

4.5

5.0

5.5

C
o
m

p
re

ss
io

n
 r

a
ti

o
 (

b
p
s)

Evolution of compression ratio

Algorithm 1
Algorithm 2

Fig. 6: Evolution in time of the average compression ratio
obtained with Algorithm 1 and Algorithm 2 for DB2b with
δ = 10.

We observe that both algorithms achieve very similar com-
pression ratios in all cases. In fact, for all the databases except
DB4 and DB5, Algorithm 2 yields better results. Thus, in most
of the tested cases, we obtain better compression ratios by
constructing a coding tree from learned compression statistics
rather than based on the fixed geometry, and this compression
ratio improvement is sufficiently large to overcome the cost
incurred during the training segment of the signal, when a good
coding tree is not yet known. This is graphically illustrated in
Figure 6; for each n, in steps of 50 up to a maximum of 4,000
vector samples, the figure plots the compression ratio obtained
up to the encoding of vector sample n, averaged over all files
of the database DB2b with δ = 10. For databases DB4 and
DB5, although Algorithm 2 does not surpass Algorithm 1, the
results are extremely close.

Ultimately, which of the algorithms will perform better

9

TABLE II: Compression ratio of Algorithm 1 and best compression ratio in [7], [8], [10] (in parenthesis).

δ DB1a DB1b DB2a DB2b DB3 DB4 DB5

0 (5.37) 4.70 (5.45) 4.79 (5.69) 5.21 (7.90) 6.93 (6.46) 5.42 (3.73) 3.58 (5.03) 4.78
5 1.97 (2.51) 1.98 2.34 (4.76) 3.54 (7.05) 2.43 1.79 1.99

10 1.55 (1.81) 1.55 1.84 (3.85) 2.73 (6.08) 1.88 1.53 1.59

TABLE III: Compression ratio of Algorithm 2 and percentage relative difference with respect to Algorithm 1 (in parenthesis).

δ DB1a DB1b DB2a DB2b DB3 DB4 DB5

0 (3.40) 4.54 (3.55) 4.62 (1.15) 5.15 (2.02) 6.79 (0.55) 5.39 (-0.56) 3.60 (-0.21) 4.79
5 (3.05) 1.91 (3.54) 1.91 (2.14) 2.29 (3.95) 3.40 (1.23) 2.40 (-0.56) 1.80 (-1.01) 2.01

10 (1.94) 1.52 (1.94) 1.52 (1.09) 1.82 (4.40) 2.61 (0.53) 1.87 (-0.65) 1.54 (-1.26) 1.61

is a function of the accuracy of the hypothesis that closer
physical proximity of electrodes implies higher correlation
(surely other physical factors must also affect correlation),
and of the heuristic employed to determine a stopping time
for the learning stage of Algorithm 2. The longer we let the
algorithm learn, the higher the likelihood that it will converge
to the best coding tree (which may or may not coincide with
the tree of Algorithm 1), but the higher the computational
cost. The results in Table III suggest that the physical distance
hypothesis seems to be more accurate for DB4 and DB5 than
for the other databases, and that the heuristic for ns chosen in
the experiments offers a good compromise of computational
complexity against compression performance.

E. Computational complexity

As mentioned, deriving a coding tree from the signal data
in Algorithm 2 comes at the price of additional memory
requirements and execution time compared to Algorithm 1.
These additional resources are required while the algorithm
is learning a coding tree T . The stopping time, ns, of this
learning stage, is determined adaptively, as specified in (10).
Table IV shows the mean and standard deviation of ns, taken
over the files of each database. We notice that, in general, the
update of T is stopped after a few thousand vector samples.
The percentage fraction of the mean stopping time with respect
to the mean total number of vector samples in each database
is also shown, in parenthesis, in Table IV. We observe that ns
is less than 1% of the number of vector samples in most cases
and it is never more than 10% of that number.

We measured the total time required to compress and de-
compress all the files in all the testing databases. Algorithm 1
was implemented in the C language, and Algorithm 2 in
C++. They were compiled with GCC 4.8.4, and run with no
multitasking (single thread), on a personal computer with a
3.4GHz Intel i7 4th generation processor, 16GB of RAM, and
under a Linux 3.16 kernel. Table V shows the average time
required by our implementation of Algorithm 2 to compress
and decompress a vector sample for each database. The results
are given for the overall processing of files and for each main
stage of the algorithm separately, namely the first stage during
which the coding tree T is being updated and the second stage
during which T is fixed.

Notice that for a fixed coding tree, the execution time is
linear in the number of scalar samples, with a very small

variation from dataset to dataset. The results that we obtained
for Algorithm 1 are similar (smaller in all cases) to those
reported for the second stage of Algorithm 2. On the other
hand, for vector samples taken before the stoping time ns, the
average compression and decompression time is approximately
proportional to m2, as expected. For most databases, this
compression time rate exceeds the sampling rate and, thus, real
time compression and decompression would require buffering
data to compensate for this rate difference; notice that the size
required for such a buffer can be estimated from the upper
bound Ns on ns, and the average compression time for each
stage of the algorithm. In general, with the exception of DB1a
and DB1b that are comprised of short files with a large number
of channels, the impact of the additional computational cost
for learning the coding tree is relatively small in relation to
the overall processing time.

Algorithm 1 has also been ported to a low power MSP432
microcontroller running at 48MHz, where it requires an av-
erage of 3.21 milliseconds to process a single scalar sample,
allowing a maximum real-time processing of 16 channels at
321Hz. In order to fit within the memory of the MSP432, the
maximum order of the predictors was set to P = 4, resulting in
a slight performance degradation with respect to that reported
in Table II. The resulting memory footprint is 42.5kB of flash
memory, and 26.7kB of RAM. Further details and advances
in this direction will be published elsewhere.

V. CONCLUSIONS

The space and time redundancy in both EEG and ECG
can be effectively reduced with a predictive adaptive coding
scheme in which each channel is predicted through an adaptive
linear combination of past samples from the same channel,
together with past and present samples from a designated
reference channel. Selecting this reference channel according
to the physical distance between the sensors that register
the signals is a very simple approach, which yields good
compression rates and, since it can be implemented off-line,
incurs no additional computational effort at coding or decoding
time. When sensor positions are not known a priori, we
propose a scheme for inter-channel redundancy analysis based
on efficient minimum spanning tree construction algorithms
for directed graphs. Both proposed encoding algorithms are
sequential, and thus suitable for low-latency applications. In
addition, the number of operations per time sample, and

10

TABLE IV: Mean and standard deviation of the stopping time, ns, obtained for each file on different databases. The percentage
fraction of the mean stopping time with respect to the mean total number of vector samples in each database is shown in
parenthesis.

δ DB1a DB1b DB2a DB2b DB3 DB4 DB5

0 (3.49) 637 ± 154 (6.78) 662 ± 210 (0.04) 875 ± 144 (0.3) 713 ± 222 (0.06) 743 ± 176 (0.58) 1227 ± 346 (1.40) 1523 ± 398
5 (4.10) 747 ± 189 (7.81) 762 ± 244 (0.04) 1050 ± 229 (0.44) 1038 ± 400 (0.09) 1046 ± 311 (0.58) 1242 ± 348 (1.76) 1911 ± 507

10 (3.79) 690 ± 180 (7.35) 717 ± 236 (0.04) 1044 ± 220 (0.46) 1081 ± 439 (0.09) 1075 ± 339 (0.55) 1172 ± 327 (1.60) 1735 ± 439

TABLE V: Average processing time (in microseconds) of a vector sample for Algorithm 2. Time averages are given for the
overall processing of files and also discriminating the period of time during which the coding tree is being updated (n ≤ ns)
from the period of time in which it is fixed (n > ns).

DB1a DB1b DB2a DB2b DB3 DB4 DB5
m 64 64 118 118 59 31 8
n > ns coding 63.3 63.3 118.4 119.4 58.6 30.4 7.2
n > ns decoding 63.6 63.6 118.8 119.2 58.9 30.4 7.6
n ≤ ns coding 7661.4 7667.1 26799.3 27190.6 6304.7 1202.9 65.9
n ≤ ns decoding 7887.5 7889.2 27811.6 28367.1 6516.0 1223.2 66.7
Global coding 320.7 562.0 130.5 217.6 60.8 37.2 8.1
Global decoding 328.7 576.7 131.3 221.6 61.2 37.4 8.5

the memory requirements depend solely on the number of
channels of the acquisition system, which makes the proposed
algorithms attractive for hardware implementations. This is
especially true for Algorithm 1, whose memory and time
requirements depend linearly on the number of channels. In the
case of Algorithm 2 these requirements are quadratic in the
number of channels during the learning stage, which might
make a pure hardware implementation more difficult if this
number is large.

APPENDIX
OTHER DISTORTION MEASURES

For the cases where δ > 0 (near-lossless) we compute the
mean absolute error (MAE), and the signal to noise ratio
(SNR) given respectively by

MAE =
1

Nm

m∑
i=1

N∑
n=1

|xi(n)− x̃i(n)| ,

SNR = 10 log10

∑m
i=1

∑N
n=1 xi(n)2∑m

i=1

∑N
n=1(xi(n)− x̃i(n))2

.

Figures 7 and 8 show plots of the MAE and the SNR, respec-
tively, against the compression ratio obtained with Algorithm 1
for different values of δ. The plots for Algorithm 2 are very
similar and thus omitted. The MAE and SNR obtained with
both algorithms for δ = 5 and δ = 10 are shown in Tables VI
and VII, respectively. We observe that, in every case, the MAE
is close to one half of the maximum allowed distortion given
by δ (appropriately scaled to µV). This matches well the
behavior expected from a TSGD hypothesis on the prediction
errors. The SNR varies significantly among databases for a
fixed value of δ, due to both the difference in scale and the
difference in power (in µV 2) among the databases. Table VIII
shows the SNR obtained using a value of δ that corresponds
approximately to 1 µV for each database. We still observe very
different values of SNR, which is explained by the difference
in power of the signals. We verified by direct observation that,

1 2 3 4 5 6 7
Compression ratio (bps)

0

1

2

3

4

5

6

M
A

E
 (

 µ
V
)

Rate-Distortion curve in terms of MAE (µV)

DB1a
DB1b
DB2a
DB2b
DB3
DB4
DB5

Fig. 7: Rate-Distortion curve in terms of MAE obtained
with Algorithm 1 when δ takes the values 0, 1, . . . , 10 for all
databases.

as expected by design, the maximum absolute error (M*AE)
for Algorithm 1 is equal to δ in every case.

Table IX compares the SNR and M*AE of Algorithm 1 with
the results published in [8]. For the comparison, we selected
the value of δ that yields the compression ratio closest to
that reported in [8] in each case. We observe that the SNR
is in general better for the best algorithm in [8], except in
the case of DB3, where Algorithm 1 attains similar (or better)
compression ratios with lossless compression (infinite SNR).
The M*AE is much smaller for Algorithm 1 in all cases. These
results should be taken with a grain of salt, though, given that
our scheme, contrary to that of [8], does not target SNR.

We also analyze the variation of the MAE and SNR over
the channels for all the databases and its dependence on
δ. Figures 9(a)-(c) show the MAE and SNR against the
compression ratio for all channels with δ = {1, 5, 10} for

11

TABLE VI: MAE (in µV) obtained with Algorithm 1 and Algorithm 2 (in parenthesis) for different values of δ.

δ DB1a DB1b DB2a DB2b DB3 DB4 DB5

5 (2.69) 2.69 (2.70) 2.70 (0.27) 0.27 (0.27) 0.27 (0.27) 0.27 (2.30) 2.29 (1.36) 1.36
10 (5.00) 5.00 (5.08) 5.09 (0.52) 0.52 (0.52) 0.52 (0.52) 0.52 (4.39) 4.38 (2.59) 2.58

TABLE VII: SNR (in dB) obtained with Algorithm 1 and Algorithm 2 (in parenthesis) for different values of δ.

δ DB1a DB1b DB2a DB2b DB3 DB4 DB5

5 (27.79) 27.59 (27.40) 26.98 (49.47) 49.47 (49.48) 49.47 (48.11) 48.11 (59.70) 59.69 (53.07) 52.89
10 (22.35) 22.16 (21.87) 21.46 (43.83) 43.83 (43.84) 43.83 (42.52) 42.52 (54.07) 54.09 (47.48) 47.33

TABLE VIII: SNR (in dB) obtained with Algorithm 1 using a value of δ that corresponds approximately to 1 µV for each
database. The specific value of δ used in each case is shown in parenthesis.

DB1a DB1b DB2a DB2b DB3 DB4 DB5

(1) 39.26 (1) 38.69 (10) 43.83 (10) 43.83 (10) 42.52 (1) 71.46 (2) 59.87

TABLE IX: Best compression ratio / distortion reported in [8] (in parenthesis), and distortion obtained with Algorithm 1 for
the choice of δ that yields the closest compression ratio.

Database CR (bps) SNR (db) M*AE (µV)

DB1b (3.32) 3.35 (47.3) 38.7 (2.85) 1
DB1b (2.42) 2.39 (36.1) 30.9 (5.35) 3
DB2b (5.26) 5.35 (80.0) 60.8 (0.73) 0.1
DB2b (4.29) 4.15 (73.9) 53.5 (1.22) 0.3
DB3 (6.27) 5.42 (80.0) ∞ (0.67) 0
DB3 (5.33) 5.42 (66.0) ∞ (1.19) 0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Compression ratio (bps)

20

30

40

50

60

70

80

S
N

R
 (

d
b
)

Rate-Distortion curve in terms of SNR (db)

DB1a
DB1b
DB2a
DB2b
DB3
DB4
DB5

Fig. 8: Rate-Distortion curve in terms of SNR obtained
with Algorithm 1 when δ takes the values 1, 2, . . . , 10 for all
databases.

the database DB1a. All channels have a similar behavior for
the MAE and SNR, with lower dispersion for the MAE than
the SNR. Since the mean square error has a dispersion similar
to the MAE (not shown), the greater dispersion of the SNR is
explained by the variation of the power among channels. This
dispersion can be reduced by selecting a specific value of δ
for each channel, depending on the power of its signal. The
behavior for MAE and SNR is similar in all the databases,
and, thus, it is reported only for DB1a for succinctness.

Figures 10 and 11 summarize the mean and standard

0 2 4 6 8 10 12
0

1

2

3

4

5

6

δ

M
AE

 (u
V)

MAE: mean and standard deviation with delta

DB1a
DB1b
DB2a
DB2b
DB3
DB4
DB5

Fig. 10: MAE mean over all channels and its standard
deviation as an errorbar when δ takes the values 1, 2, . . . , 10
for all databases.

deviation of both the MAE and the SNR measures over all
channels, for each database for different values of δ. One
standard deviation is shown as an errorbar with the mean for
each δ. Again, a similar behavior among all the databases is
observed, with lower dispersion in the MAE, increasing with
δ and almost constant dispersion for the SNR.

REFERENCES

[1] A. Koski, “Lossless ECG encoding,” Computer Methods and Programs
in Biomedicine, vol. 52, no. 1, pp. 23 – 33, 1997.

12

(a) (b) (c)

Fig. 9: (a)–(c) Rate-Distortion values for all channels and files in terms of MAE and SNR obtained with Algorithm 1 when
δ takes the values (a) 1, (b) 5 and (c) 10 for database DB1a. Each channel is plotted with a different color.

0 2 4 6 8 10 12
10

20

30

40

50

60

70

80

δ

SN
R

 (d
B)

SNR: mean and standard deviation with delta

DB1a
DB1b
DB2a
DB2b
DB3
DB4
DB5

Fig. 11: SNR mean over all channels and its standard
deviation as an errorbar when δ takes the values 1, 2, . . . , 10
for all databases.

[2] G. Antoniol and P. Tonella, “EEG data compression techniques,” IEEE
Trans. Biomedical Engineering, vol. 44, no. 2, pp. 105–114, Feb 1997.

[3] Z. Arnavut and H. Koak, “Lossless EEG signal compression,” in Proc.
5th Int. Conf. Soft Computing, Computing with Words and Perceptions
in System Analysis, Decision and Control, Sept 2009.

[4] K. Srinivasan, J. Dauwels, and M. R. Reddy, “A two-dimensional
approach for lossless EEG compression,” Biomedical Signal Processing
and Control, vol. 6, no. 4, pp. 387 – 394, 2011.

[5] N. Memon, X. Kong, and J. Cinkler, “Context-based lossless and near-
lossless compression of EEG signals,” IEEE Trans. Inform. Technology
in Biomedicine, vol. 3, no. 3, pp. 231–238, Sept 1999.

[6] Y. Wongsawat, S. Oraintara, T. Tanaka, and K. Rao, “Lossless multi-
channel EEG compression,” in Proc. 2006 IEEE Int. Symp. Circuits and
Systems, May 2006.

[7] K. Srinivasan, J. Dauwels, and M. Reddy, “Multichannel EEG com-
pression: Wavelet-based image and volumetric coding approach,” IEEE
Journal of Biomedical and Health Informatics, vol. 17, no. 1, pp. 113–
120, Jan 2013.

[8] J. Dauwels, K. Srinivasan, M. Reddy, and A. Cichocki, “Near-lossless
multichannel EEG compression based on matrix and tensor decompo-
sitions,” IEEE Journal of Biomedical and Health Informatics, vol. 17,
no. 3, pp. 708–714, May 2013.

[9] Q. Liu, M. Sun, and R. Sclabassi, “Decorrelation of multichannel EEG
based on Hjorth filter and graph theory,” in Proc. 6th Int. Conf. Signal
Proc., vol. 2, Aug 2002, pp. 1516–1519 vol.2.

[10] ISO/IEC 14496-3:2005/Amd.2:2006, Information technology—Coding
of audio-visual objects—Part 3: Audio, 3rd Ed. Amendment 2: Audio
Lossless Coding (ALS), new audio profiles and BSAC extensions.

[11] Y. Kamamoto, N. Harada, and T. Moriya, “Interchannel dependency
analysis of biomedical signals for efficient lossless compression by

MPEG-4 ALS,” in Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, March 2008, pp. 569–
572.

[12] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory,
vol. 12, pp. 399–401, Jul. 1966.

[13] N. Merhav, G. Seroussi, and M. Weinberger, “Coding of sources
with two-sided geometric distributions and unknown parameters,” IEEE
Trans. Inform. Theory, vol. 46, no. 1, pp. 229–236, Jan 2000.

[14] J. Rissanen, “Universal coding, information, prediction, and estimation,”
IEEE Trans. Inform. Theory, vol. 30, pp. 629–636, Jul. 1984.

[15] A. Singer and M. Feder, “Universal linear prediction by model order
weighting,” IEEE Trans. Sig. Processing, vol. 47, no. 10, pp. 2685–
2699, Oct 1999.

[16] G.-O. Glentis and N. Kalouptsidis, “A highly modular adaptive lattice
algorithm for multichannel least squares filtering,” Signal Processing,
vol. 46, no. 1, pp. 47–55, Sep. 1995.

[17] C. on methods of clinical examination in electroencephalography, “Re-
port of the committee on methods of clinical examination in electroen-
cephalography,” Electroencephalography and Clinical Neurophysiology,
vol. 10, no. 2, pp. 370 – 375, 1958.

[18] P. Macfarlane, A. van Oosterom, O. Pahlm, P. Kligfield, M. Janse, and
J. Camm, Eds., Comprehensive Electrocardiology, 2nd ed. London:
Springer, 2010, vol. 1.

[19] O. Borůvka, “O jistém problému minimálnı́m,” Práce mor. přı́rodověd.
spol. v Brně, vol. 3, pp. 37––58, 1926.

[20] J. B. Kruskal, “On the shortest spanning subtree of a graph and the trav-
eling salesman problem,” in Proceedings of the American Mathematical
Society, 7, 1956.

[21] E. F. Moore, “The shortest path through a maze,” in Proceedings of
the International Symposium on the Theory of Switching. Harvard
University Press, 1959, pp. 285–292.

[22] R. G. Gallager and D. C. Van Voorhis, “Optimal source codes for ge-
ometrically distributed integer alphabets,” IEEE Trans. Inform. Theory,
vol. 21, pp. 228–230, mar 1975.

[23] N. Merhav, G. Seroussi, and M. J. Weinberger, “Optimal prefix codes
for two-sided geometric distributions,” IEEE Trans. Inform. Theory, vol.
IT-46, pp. 121–135, Jan. 2000.

[24] R. F. Rice, “Some practical universal noiseless coding techniques —
Parts I–III,” jet Propulsion Lab., Pasadena, CA, Tech. Reps. JPL-79-22,
JPL-83-17, and JPL-91-3, Mar. 1979, Mar. 1983, Nov. 1991.

[25] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image
compression algorithm: principles and standardization into JPEG-LS,”
IEEE Trans. Image Processing, vol. 9, no. 8, pp. 1309–1324, Aug 2000.

[26] R. E. Tarjan, “Finding optimum branchings,” Networks, vol. 7, no. 1,
pp. 25–35, 1977.

[27] P. M. Camerini, L. Fratta, and F. Maffioli, “A note on finding optimum
branchings.” Networks, vol. 9, no. 4, pp. 309–312, 1979.

[28] H. Gabow, Z. Galil, T. Spencer, and R. Tarjan, “Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs,”
Combinatorica, vol. 6, no. 2, pp. 109–122, 1986.

[29] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, 2000 (June 13).

13

[30] G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw,
“BCI2000: a general-purpose brain-computer interface (BCI) system,”
IEEE Trans. Biomedical Engineering, vol. 51, no. 6, pp. 1034–1043,
June 2004.

[31] G. Dornhege, B. Blankertz, G. Curio, and K. Muller, “Boosting bit
rates in noninvasive EEG single-trial classifications by feature combina-
tion and multiclass paradigms,” IEEE Trans. Biomedical Engineering,
vol. 51, no. 6, pp. 993–1002, June 2004.

[32] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio,
“The non-invasive Berlin brain–computer interface: Fast acquisition of

effective performance in untrained subjects,” NeuroImage, vol. 37, no. 2,
pp. 539 – 550, 2007.

[33] A. Delorme, G. A. Rousselet, M. J.-M. Macé, and M. Fabre-Thorpe,
“Interaction of top-down and bottom-up processing in the fast visual
analysis of natural scenes,” Cognitive Brain Research, vol. 19, no. 2,
pp. 103 – 113, 2004.

[34] R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-
Signaldatenbank CARDIODAT der PTB über das Internet,” Biomedi-
zinische Technik, vol. 40, no. 1, pp. S317–S318, 1995.

	I Introduction
	I-A Background on biomedical signal compression
	I-B Contribution
	I-C Summary of the contribution

	II Statistical modeling of biomedical signals for predictive coding
	II-A Biomedical signals
	II-B Predictive coding
	II-C Statistical modeling

	III Encoding
	III-A Definition of channel description order for known electrode positions
	III-B Coding algorithm
	III-C Definition of channel description order for unknown electrode positions
	III-D Near-lossless encoding

	IV Experiments, results and discussion
	IV-A Datasets
	IV-B Evaluation procedure
	IV-C Compression Results for Algorithm ??
	IV-D Compression Results for Algorithm ??
	IV-E Computational complexity

	V Conclusions
	Appendix: Other distortion measures
	References

