english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42714 Cómo citar
Título: Tell me where you are and I tell you where you are going : Estimation of dynamic mobility graphs
Autor: Fiori, Marcelo
Musé, Pablo
Tepper, Mariano
Sapiro, Guillermo
Tipo: Ponencia
Palabras clave: Graph inference, Asynchronous dynamic mobility graphs
Descriptores: Procesamiento de Señales
Fecha de publicación: 2016
Resumen: The interest in problems related to graph inference has been increasing significantly during the last decade. However, the vast majority of the problems addressed are either static, or systems where changes in one node are immediately reflected in other nodes. In this paper we address the problem of mobility graph estimation, when the available dataset has an asynchronous and time-variant nature. We present a formulation for this problem consisting on an optimization of a cost function having a fitting term to explain the observations with the dynamics of the system, and a sparsity promoting penalty term, in order to select the paths actually used. The formulation is tested on two publicly available real datasets on US aviation and NY taxi traffic, showing the importance of the problem and the applicability of the proposed framework.
Descripción: Trabajo presentado en Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brasil, 10-13 jul., 2016
Citación: Fiori, M, Musé, P, Tepper, M, Sapiro, G. "Tell me where you are and I tell you where you are going: Estimation of dynamic mobility graphs" Publicado en: Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, 10-13 jul., 2016, pp. 1-5, doi: 10.1109/SAM.2016.7569685.
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FMTS16.pdf437,5 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons