Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/42713
Cómo citar
Título: | An optimal multiclass classifier design |
Autor: | Fiori, Marcelo Di Martino, Matías Fernández, Alicia |
Tipo: | Ponencia |
Palabras clave: | Support vector machines, Optimization, Algorithm design and analysis |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2016 |
Resumen: | The use of different evaluation measures for classification tasks have gained a significant amount of attention in the past decade, specially for those problems with multiple and imbalanced classes. However, the optimization of classifiers with respect to these measures is still heuristic, using ad-hoc rules with classical accuracy-optimized classifiers. We propose a classifier designed specifically to optimize one of the possible measures, namely, the so-called G-mean. Nevertheless, the technique is general, and it can be used to optimize generic evaluation measures. The optimization algorithm to train the classifier is described, and the numerical scheme is tested showing its usability and robustness. The code is publicly available, as well as the datasets used along this paper. |
Descripción: | Trabajo presentado en 23rd International Conference on Pattern Recognition (ICPR), Cancun, México, 4-8 dic, 2016 |
Citación: | Fiori, M, Di Martino, M, Fernández, A. "An optimal multiclass classifier design" Publicado en: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4-8 dic, 2016, pp. 480-485, doi: 10.1109/ICPR.2016.7899680. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
FDF16.pdf | 1,42 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons