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Abstract—The use of different evaluation measures for clas-
sification tasks is gaining attention, specially for multiclass
imbalanced problems. However, the optimization of classifiers
with respect to these measures is still heuristic, using ad-hoc rules
to classical accuracy-optimized classifiers. We propose a classifier
designed specifically to optimize one of the possible measures,
namely, the so-called G-mean. Nevertheless, the technique is
general, and it can be used to optimize generic evaluation
measures. The optimization algorithm to train the classifier
is described, and the numerical scheme is tested showing its
usability and robustness. The code is publicly available, as well
as the datasets used along this paper.

I. INTRODUCTION

Evaluation measures have a crucial role in binary and
multiclass classifier analysis and design. There are several
proposed measures both for binary classification (Accuracy,
Recall, Precision, F-measure, Kappa, ACU [1], Informedness
and Markedness [2]) and multiclass classification, like Average
G-mean [3], MAUC, Average Accuracy [4] micro and macro
Recall, Precision and F-measure [5], [6]. Depending on the
problem and field of application one measure could be more
suitable than another. While in the Behavioral Sciences, Speci-
ficity and Sensitivity are commonly used, in Medical Sciences,
ROC analysis is a standard for evaluation. On the other hand,
in the Information Retrieval community and fraud detection,
Recall, Precision and F-measure are considered appropriate
measures for testing effectiveness.

In this sense, obtaining an optimal classifier for a given
measure is a very important and challenging problem.

In [7] we proposed a general framework to design an opti-
mal binary classifier which maximizes a selected performance
measure. One of the main motivations was to find classifiers
adjusted to imbalanced problems, for which the accuracy-
based algorithms perform poorly. The main difficulties in
finding discriminatory rules for these applications consist on
dealing with skewed data distributions and severe overlapping
between classes.

Compared with binary classification, the multiclass clas-
sification problem is more complex and less studied [8],
[9]. In particular, mutliclass imbalance problems pose new
challenges that are not observed in two-class problems; for
example, it is harder to deal with different misclassification
costs, and multiclass also makes the imbalance problem harder
[10]. Several solutions are based on considering a multiclass
problem in a set of two-class sub-problems, being desirable to
develop more general and effective strategies (see for example
[10] and references therein)

In [4], the authors provide an experimental analysis to
determine the behavior of different approaches: binarization

schemes, one versus one and one versus all in order to applied
imbalance techniques for binary classification problems, and
compare with methods like Adaboost.NC proposed by [10]
and others ad hoc methods.

In this work we propose a different approach to this prob-
lem, generalizing the framework presented in [7] and [11] to
multiclass problems. The result is a multiclass classifier based
on an optimal decision rule that maximizes a chosen evaluation
measure, in this case the G-mean. We chose this measure
because is simple and suitable for imbalance problems [3],
[12] but the framework is general and could be extended
to other measures as micro or macro F-measure or Average
Accuracy. In contrast with common solutions, the proposed
algorithm does not need to change original distributions [13]–
[15], tune thresholds of classifiers’ outputs [16], or arbitrarily
assign misclassification costs to find an appropriate decision
rule for severe imbalanced problems.

The main contributions of the present paper are:

i) We extend our previous works [11] and [7] for problems
with multiple classes, and we show how to find a
partition of the feature space guided by the G-mean
measure.

ii) We formulate the classification problem using level sets
of auxiliary functions which may inspire novel ap-
proaches to deal with imbalanced multi-class problems.

iii) We propose a practical implementation of the proposed
theory and we evaluate it on synthetic and real data.

The rest of the paper is organized as follows. In Section
II the optimal multi-class classifier for the G-measure is
proposed, and a numerical scheme is presented. Experimental
results are shown in Section III, and we conclude in Section
IV.

II. PROPOSED CLASSIFIER FORMULATION

Let us consider a classification problem with N classes, and
let us define C = {ωi}i=1...N as the set of possible classes.
Given a classifier, for each individual class ωi consider the
following quantities: TPi (true positives) which denotes the
number of samples x ∈ ωi correctly classified, FPi (false
positives) which denotes the number of x /∈ ωi classified as
belonging to class ωi, and FNi (false negatives) which denotes
the number of samples in ωi classified as other class ωj , j 6= i.
Different multiclass measures can be defined based on these
basic quantities. For instance, G-mean is a suitable measure



for imbalance scenarios, since it is the geometric mean of all
class accuracies:

G-mean =

(
i=N∏
i=1

TPi
TPi + FNi

)1/N

.

If Ω denotes the feature domain, a multiclass classifier can
be characterized by the regions Ωi ⊂ Ω such that if x ∈ Ωi,
then it is labeled as belonging to class ωi. For the problems we
are restricting to, the partition {Ω1 ... ΩN} must also satisfy⋃

Ωi = Ω (all samples have to be labeled) and Ωi ∩ Ωj =
φ ∀ i 6= j (it is not allowed to assign more than one label to
the same sample).

In order to find the classifier that maximizes a given
performance measure, we should be able to express the basic
quantities {TPi, FPi, FNi}i=1...N in terms of Ωi.

Specifically, let us suppose that we have estimated the
probability density function of each class ωi (fi(x)). Then we
have the following approximation for the number of elements
of class ωi labeled as belonging to class ωj (from now on
Aij):

Aij =

∫
Ω

fi(x)1Ωj
(x)dx, (1)

where 1Ωj (x) is the Ωj characteristic function of Ωj :

1Ωj
(x) =

{
1 x ∈ Ωj
0 otherwise (2)

In a general formulation, we have to find the regions Ωi
which minimize a certain cost function L(A). This is an ex-
tremely difficult problem, at least with the present formulation.
Let us express the problem in terms of N auxiliary functions
uk(x) k = 1 ... N such that 1Ωk

= H(uk), where H is the
Heaviside step function. This is, each region Ωk is determined
as the set where the function uk(x) is positive. This trick
is known as the Level Set Method [17], and it allows us to
formulate the problem in terms of these functions uk instead
of the regions or boundaries of Ωk. In this sense, the optimality
conditions for {uk(x)}k to maximize/minimize L are:∑

ij

∂L
∂Aij

δAij
δuk(x)

= 0 (3)

with

δAij
δuk(x)

= fi(x)
∂1Ωj

∂uk
(x) for k = 1 ... N (4)

Assuming that the functions fi(x) are known, the task of
finding the optimal classifier consists in finding functions uk
determining regions Ωi that maximize the chosen measure, in
this case the G-mean.

The G-mean measure is defined as the geometric mean of
the accuracies pk = TPk

TPk+FNk
of each class; so the (equivalent

after a monotone operator) function to maximize is LG =
ΠN
k=1pk. Of course we have to add the constraint that the

support of the functions uk form a partition of the feature
space Ω. Let us call Sij =

∫
Ω
H(ui(x))H(uj(x)) the overlap

between the supports of ui and uj . The optimization problem
can be then written as:

max
ui:i=1...N

LG (5)

s.t. Sij = 0 i 6= j

Note that the condition of
⋃
i Ωi = Ω is not necessary, since

the G-mean can only increase when any of the Ωi is expanded
to an empty portion of the space Ω.

Let us re-write the constrained problem (5) as the following
unconstrained problem with increasing λ:

{ui}i=1...N = lim
λ→∞

arg max
ui:i=1...N

LG − λ
∑
ij

Sij (6)

In order to solve this problem, we use a gradient ascent
methodology, while increasing λ simultaneously if the con-
dition

∑
ij Sij = 0 does not hold. This can be seen as a

penalty-like optimization approach [18].
The differential of the functional with respect to each uk is

the following:

δL

δuk(x)
=
∏
i6=k

(Aii)fk(x)δ(uk(x))−2λ
∑
i6=k

H(ui(x))δ(uk(x))

so the resulting numerical scheme to solve the optimization
is:

un+1
k = unk+δt

∏
j 6=k

∫
fjH(unj )

 fkδ(u
n
k )− 2λn

∑
j 6=k

δ(unk )H(uj)

 k = 1...N

λn+1 = λn + δ′t

∑
i 6=j

∫
H(uni )H(unj )


where δt and δ′t are time steps. Both parameters were set to
10−2 along the experiments in this paper; higher values can
speedup convergence but can also turn the scheme unstable.
This iterative algorithm is repeated until convergence (i.e. the
difference between [un1 ... unN ] and [un+1

1 ... un+1
N ] is small

and Sij = 0 for i 6= j).
In Figure 1, the evolution of u1,2,3 is shown for a two

dimensional example with three classes. Note that in this
example, the data is complex, multi-modal and overlapped
with imbalanced classes. In order to visualize the evolution
of the functions, we set on Figure 1 (superposed with training
samples) in red, green and blue channels H(un1 ), H(un2 ) and
H(un3 ) respectively. As we can see, at the beginning there
is some overlapping between Ω1,2,3 (so the combination of
colors instead of pure red, green or blue can be seen). Then
λ is increased along iterations until Ω1,2,3 are disjoint. It
is important to pay special attention to the behavior of the
algorithm in those areas in which there are several samples
from different classes (areas with high overlapping), since
these are the more challenging and important portions of the
domain (in contrast to those regions where samples are very
unlikely).



III. EXPERIMENTAL RESULTS

In this section we present both simulations and experiments
with real data, which illustrate the benefits of designing the
classifier to maximize the G-mean. In particular, we show that
this strategy is better than training a big number of SVM
classifiers (varying the parameters for a large grid), and then
choosing the best of them in terms of the G-mean.

Since it is very important to observe how the proposed
classifier performs for different dataset properties (like the
number of features, classes and imbalance ratio), in the follow-
ing section we run experiments with synthetic data trying to
cover a wide range of data characteristics. In Section III-B, we
present the results of experiments with two very challenging
multi-class datasets, showing the applicability of the proposed
technique for real problems.

A. Experiments with synthetic data

For experimental validation we used 16 datasets with differ-
ent shapes, number of classes and features, overlapping degree,
and imbalance ratio between classes. Table I summarizes some
of the main characteristics of the used datasets, which are
available on-line.1

TABLE I
DESCRIPTION OF THE USED DATASEST. IR STANDS FOR imbalance rate,

DEFINED AS THE NUMBER OF SAMPLES OF THE CLASS WITH MORE
INSTANCES DIVIDED BY THE NUMBER OF SAMPLES OF THE CLASS WITH

LESS INSTANCES

Id Num. Classes Num. Features Num. Samples IR
22 2 2 5e+ 03 3
23 2 3 4.1e+ 03 2.3
24 2 4 4.6e+ 03 2.7
25 2 5 3.6e+ 03 1.9
32 3 2 6e+ 03 3.8
33 3 3 6.5e+ 03 2.3
34 3 4 5e+ 03 8.2
35 3 5 4.8e+ 03 2
42 4 2 7.1e+ 03 3.8
43 4 3 9.9e+ 03 2.8
44 4 4 6.2e+ 03 8.2
45 4 5 6.3e+ 03 2
52 5 2 1e+ 04 3.8
53 5 3 1.1e+ 04 3
54 5 4 1e+ 04 10
55 5 5 7.1e+ 03 2.9

For these experiments, a classical kernel density estimation
technique was used to infer the densities of the different
classes [19].

We compare the proposed algorithm, from now on called
OMG (acronym for Optimal Multiclass G-mean), with Multi-
class RBF-Kernel Supports Vector Machine algorithm (SVM).
Parameters for each algorithm were chosen to maximize G-
mean (performing 10-fold cross validation over train dataset).
Each set was equally split on train and test subsets. The
LibSVM [20] library was used for the SVM classification.

Results for accuracy and G-mean are shown in Figures
2 and 3 for training and testing sets. Results were sort by
accuracy. Note that for those datasets where high accuracy

1www.fing.edu.uy/˜matiasdm/Archivos/CC/Data.zip

can be achieved (right part of the charts), results for OMG
and SVM approaches are very similar. This can be explained
as follows: high accuracy is only possible for problems where
different classes present small overlapping, i.e. classes are
almost separable. If that is the case, then all the approaches
will converge to the decision boundaries which separate the
classes.

On the other hand, for those cases in which classes present
high overlapping (left part of the charts), finding decision
boundaries is more challenging and differences between al-
gorithms become more significant.

B. Experiments with real data

On a second round of experiments, we evaluated the pro-
posed approach with real and publicly available multi-class
and imbalanced data [21]. Tables II and III shows the Accu-
racy, G-mean and the accuracy per class for the Page-Blocks
and Yeast databases of the UCI machine learning repository.
As it can be observed, even for the parameters (cost and γ
when we consider a Gaussian kernel) that lead to maximum
G-mean, the performance of SVM approaches is outperformed
(in the G-mean sense) by the proposed technique. This can be
explained as follows: even if we look for those parameters
that maximize alternative measures -in this case G-mean-
the intrinsic optimization of SVM tries to achieve maximum
accuracy. In contrast, the proposed technique is guided to
maximize the geometrical mean of each class accuracy and
hence we do not need to tune parameters, move to high-
dimensional spaces or modify samples distributions to handle
imbalanced and multi class databases.

IV. CONCLUSIONS AND FUTURE WORK

We proposed a framework generalization to multi-class clas-
sification problems in imbalanced domains. We presented the
optimality conditions for the decision frontier to maximize the
G-mean, and a numerical scheme to solve it. The technique is
general, in the sense that it can be used to obtain optimal multi-
class classifiers with respect to other evaluation measures. The
analysis is supported by experimental results, which show the
potential of the proposed scheme.

The proposed framework allows to face multi-class im-
balance problems with a specific classifier adequate to the
problem, which is theoretically simple and direct, in contrast
with most of the approaches that combine two-class classifiers
with strategies like one versus all or assign ad-hoc weights
to classifiers outputs that have a very difficult theoretical
interpretation.
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(a) After 2 iterations.
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(b) After 3 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) After 4 iterations.
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(d) After 10 iterations.
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(e) After 100 iterations.
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(f) After 300 iterations.

Fig. 1. Evolution of the zero level sets of uk for k = 1 . . . 3 (decision frontiers).
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Fig. 2. Accuracy for OMG (dark-dashed) and SVM (clear-solid) comparison
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(a) G-mean for Training set
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Fig. 3. G-mean for OMG (dark-dashed) and SVM (clear-solid) comparison

TABLE II
RESULTS FOR page-blocks DATABASE.

Test Set G-mean (%) Acc. (%) A1 (%) A2 (%) A3 (%) A4 (%) A5 (%)
OMG 74.2 79.7 80.9 61.7 63.6 90.2 78.3
SVM 64.4 95.2 99.1 65.3 63.6 73.2 36.7
SVM-RBF 73.5 96.1 98.8 79.6 72.7 68.3 55.0

Train Set G-mean (%) Acc. (%) A1 (%) A2 (%) A3 (%) A4 (%) A5 (%)
OMG 87.3 81.7 81.9 67.9 100 100 90.9
SVM 67.5 95.7 99.4 61.1 58.8 93.6 41.8
SVM-RBF 92.2 98.3 99.4 87.7 100 93.6 81.8

TABLE III
RESULTS FOR yeast DATABASE.

Test Set G-mean (%) Acc. (%) A1 (%) A2 (%) A3 (%) A4 (%) A5 (%) A6 (%) A7 (%) A8 (%) A9 (%) A10 (%)
OMG 53.1 44.7 50.4 34.6 41.5 85.0 37.0 60.5 68.4 25.0 75.0 100
SVM 0 30.9 0 0 100 0 0 0 0 0 0 0
SVM-RBF 0 58.8 54.5 43.4 71.6 85.0 37.0 86.8 52.6 0 25.0 100

Train Set G-mean (%) Acc. (%) A1 (%) A2 (%) A3 (%) A4 (%) A5 (%) A6 (%) A7 (%) A8 (%) A9 (%) A10 (%)
OMG 65.1 50.7 53.7 41.3 42.3 70.8 58.3 64.4 93.8 77.8 75.0 100
SVM 0 30.9 0 0 100 0 0 0 0 0 0 0
SVM-RBF 62.0 69.4 62.6 57.9 76.5 100 62.5 89.7 62.5 16.7 50.0 100
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[4] A. Fernádez, V. López, M. Galar, M. J. del Jesus, and F. Herrera,
“Analysing the classification of imbalanced data-sets with multiple
classes: Binarization techniques and ad-hoc approaches,” Knowledge-
Based Systems, vol. 42, pp. 97 – 110, 2013.

[5] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information Processing and Manage-
ment, vol. 45, no. 4, pp. 427 – 437, 2009.

[6] I. Pillai, G. Fumera, and F. Roli, “F-measure optimisation in multi-
label classifiers,” Proceedings - International Conference on Pattern
Recognition, pp. 2424–2427, 2012.

[7] M. Di Martino, G. Hernández, M. Fiori, and A. Fernández, “A new
framework for optimal classifier design,” Pattern Recognition, vol. 46,
no. 8, pp. 2249–2255, 2013.

[8] G. Ou and Y. Murphey, “Multi-class pattern classification using neural
networks,” Pattern Recognition, vol. 40, no. 1, pp. 4–18, 2007, cited By
(since 1996)79.

[9] Y. Sun, M. Kamel, and Y. Wang, “Boosting for learning multiple classes
with imbalances class distribution,” IEEE International Conference on
Data Mining, pp. 592–602, 2006.

[10] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and po-
tential solutions,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 42, no. 4, pp. 1119–1130, 2012.

[11] M. Di Martino, A. Fernández, P. Iturralde, and F. Lecumberry, “Novel
classifier scheme for imbalanced problems,” Pattern Recognition Letters,
vol. 34, no. 10, pp. 1146–1151, 2013.



[12] P. Phoungphol, Y. Q. Zhang, and Y. Zhao, “Robust multiclass classifi-
cation for learning from imbalanced biomedical data,” Special Issue of
Tsinghua Science and Technology on Bioinformatics and Computational
Biology, 2012.

[13] M. A. Tahir, J. Kittler, and F. Yan, “Inverse random under sampling for
class imbalance problem and its application to multi-label classification,”
Pattern Recognition, vol. 45, no. 10, pp. 3738 – 3750, 2012.

[14] R. Barandela, J. Sánchez, V. Garcı́a, and E. Rangel, “Strategies for
learning in class imbalance problems,” Pattern Recognition, vol. 36,
no. 3, pp. 849 – 851, 2003.

[15] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting
for classification of imbalanced data,” Pattern Recognition, vol. 40,
no. 12, pp. 3358 – 3378, 2007.

[16] I. Pillai, G. Fumera, and F. Roli, “Threshold optimisation for multi-label
classifiers,” Pattern Recognition, vol. 46, no. 7, pp. 2055 – 2065, 2013.

[17] S. Osher and J. A. Sethian, “Fronts propagating with curvature- depen-
dent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal
of Computational Physics, vol. 79, pp. 12–49, 1988.

[18] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

[19] M. P. Wand and M. C. Jones, Kernel Smoothing (Monographs on
Statistics & Applied Probability). Chapman and Hall/CRC, Dec. 1994.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011.

[21] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml


