english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/42693 How to cite
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSteinfeld, Leonardoes
dc.contributor.authorRitt, Marcuses
dc.contributor.authorSilveira, Fernandoes
dc.contributor.authorCarro, Luigies
dc.date.accessioned2024-02-26T19:52:39Z-
dc.date.available2024-02-26T19:52:39Z-
dc.date.issued2015es
dc.date.submitted20240223es
dc.identifier.citationSteinfeld, L., Ritt, M., Silveira, F, Carro, L. "Optimum design of a banked memory with power management for wireless sensor networks". Wireless Network, v. 21, 2015. pp 81-94 https://doi.org/10.1007/s11276-014-0763-5es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/42693-
dc.descriptionPostprintes
dc.description.abstractThe ever-increasing complexity of applications covered by wireless sensor networks (WSNs) demands for increasing memory size, which in turn increases the power drain. It is well known that SRAM power consumption can be reduced by employing a banked structure, where unused banks are switched into the low leakage retention mode. Although several power management strategies and algorithms for allocating the memory contents to the banks have been proposed, the energy savings limits of these techniques were not completely explored. In this work, we propose a new strategy for memory banking, taking advantage of the software properties intrinsic to WSN, and achieve aggressive power savings. We present a detailed model of the energy saving for uniform banks with two power management schemes: a best-oracle policy and a simple greedy policy. The model gives valuable insight into key factors (coming from the application, the technology, and design decisions) that are critical for reaching the maximum achievable energy saving. Using our model the optimum number of banks can be estimated at design time to reach more aggressive energy savings. The memory content allocation and the power management problem were solved by an integer linear program formulation for two real wireless sensor network applications (based on TinyOS and ContikiOS). Experimental results show memory energy reduction up to 78.3 % for a partition overhead of 1 ,% representing an overall energy saving close to 19 % in data collection WSN applications, including the communication energy and sleep power. The saving would increase to 34 % in more intensive processing applications.es
dc.languageenes
dc.publisherSpringer nternational Publishinges
dc.relation.ispartofWireless Network, v. 21, 2015, pp 81-94es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectWireless sensor networkes
dc.subjectBanked memoryes
dc.subjectPower managementes
dc.subjectSRAM memoryes
dc.subjectEvent-driven softwarees
dc.subject.otherElectrónicaes
dc.titleOptimum design of a banked memory with power management for wireless sensor networkses
dc.typeArtículoes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
dc.identifier.doihttp://dx.doi.org/10.1007/s11276-014-0763-5es
udelar.academic.departmentElectrónica-
udelar.investigation.groupMicroelectrónica-
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
SRSC15.pdf406 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons