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Abstract The ever-increasing complexity of applica-

tions covered by wireless sensor networks (WSNs) de-

mands for increasing memory size, which in turn in-

creases the power drain. It is well known that SRAM

power consumption can be reduced by employing a banked

structure, where unused banks are switched into the

low leakage retention mode. Although several power

management strategies and algorithms for allocating

the memory contents to the banks have been proposed,

the energy savings limits of these techniques were not

completely explored. In this work, we propose a new

strategy for memory banking, taking advantage of the

software properties intrinsic to WSN, and achieve ag-

gressive power savings. We present a detailed model of

the energy saving for uniform banks with two power

management schemes: a best-oracle policy and a sim-

ple greedy policy. The model gives valuable insight into

key factors (coming from the application, the technol-

ogy, and design decisions) that are critical for reach-

ing the maximum achievable energy saving. Using our

model the optimum number of banks can be estimated

at design time to reach more aggressive energy savings.

The memory content allocation and the power manage-

ment problem were solved by an integer linear program

formulation for two real wireless sensor network appli-

cations (based on TinyOS and ContikiOS). Experimen-

tal results show memory energy reduction up to 78.3%

for a partition overhead of 1%, representing an over-
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all energy saving close to 19% in data collection WSN

applications, including the communication energy and

sleep power. The saving would increase to 34% in more

intensive processing application.
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1 Introduction

Wireless sensor networks (WSNs) embed computation

and sensing in the physical world, enabling an unprece-

dented spectrum of applications, ranging from environ-

mental monitoring to medicine. Nowadays, one of the

major issues of WSNs is reducing the energy consump-

tion without sacrificing the computational power. The

ever-increasing complexity of applications, reflected in

the software complexity, demands for increasing mem-

ory size. In some applications the code size is doubling

every ten months [26]. Larger memory size requires

more power, as it has been found that the memory sys-

tem is responsible for a large portion of the total energy

budget in SoCs [6].

The aim of this work is to reduce the energy con-

sumption in processing, particularly in the memory sub-

system. Our proposal has a major impact on appli-

cations where the processing energy is relatively im-

portant in the total budget, including the radio. This

kind of more processing oriented network is increasingly

spreading. Examples of such applications are: heavy

processing application that transmit only final results

(do not transmit raw data); network collaborative pro-

cessing application, in which nodes exchange messages
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within their neighborhood with a very low communica-

tion workload associated to routing.

An effective approach to reduce the dynamic power

is to partition a SRAM memory into multiple banks

that can be independently accessed, and since only one

bank is active per access, the remaining idle banks can

be put into a low-leakage sleep state to further reduce

the static power consumption [10]. However, the power

and area overhead due to the extra wiring and addi-

tional circuits prevents an arbitrary fine partitioning

into a large number of small banks. Therefore, the final

number of banks should be carefully chosen at design

time, taking into account this partitioning overhead.

The memory organization may be limited to equally-

sized banks, or it can allow any bank size. Moreover,

the strategy for the bank states management may range

from a greedy policy (as soon as a bank memory is not

being accessed it is put into low leakage state) to the

use of more sophisticated prediction algorithms [4].

The main contribution of this work is to show that,

the new problem formulation proposed in this paper,

one can find the optimum partitioning of memory banks

in several WSN applications. We derive expressions for

energy savings in the case of equally sized banks based

on a detailed model for two power management strate-

gies: best-oracle policy and a simple greedy policy. The

maximum achievable energy saving is found, and the

limiting factors are clearly determined. We show that

it is possible to find a near optimum number of banks

at design time, irrespective of the application and of

the access pattern to memory, provided that the mem-

ory energy parameters are given, such as energy con-

sumption characteristics and the partition overhead as

a function of the number of banks. Experimental results

show that using our approach in a banked memory leads

to aggressive memory energy reduction (close to 80%),

and an overall energy savings of 12%, in data collection

WSN applications, to 25 % in more intensive processing

applications. Our results also suggest that adopting an

advanced power management must be carefully eval-

uated, since the best-oracle is only marginally better

than a greedy strategy for a moderate wake-up energy

cost.

The remainder of this paper is organized as follows.

In Section 2 we give the motivation of this work, and in

Section 3 we present previous related work. In Section

4, we describe the banked memory with power manage-

ment and its energy model, and in Section 5 we derive

expressions for the energy savings based on this model.

In Section 6 we formulate the memory allocation and

power management as an integer linear program (ILP).

The experiments are presented in Section 7, and in Sec-

tion 8 we discuss the results. Finally, Section 9 presents

some concluding remarks and research directions.

2 Motivation

Reduced energy consumption is one of the major aims

in WSNs, since it determines the lifetime of sensor nodes

when they are powered from batteries, and dictates se-

vere requirements on the harvesting system when the

node scavenges scarce energy from the environment. In

both cases, low-power techniques must be adopted.

A canonical sensor node consists of the following

blocks: a processing component (usually a microcon-

troller) with wireless communication capabilities (RF

transceiver), sensors/actuators and a power supply sub-

system. The RF transceiver is the most power-consuming

component of a sensor node. The instantaneous power

of the radio (receive or transmit mode) exceeds the

processing power (microcontroller in active mode) in

around one order of magnitude. For example, in the

so-called Berkeley-motes, the nominal communication

to processing ratio is about ten (see [22] for this data

and the evolution from earlier platforms). Prayati et al.

[23] isolate and measure each contributor to the overall

mote power consumption, confirming the ratio above

and providing a model from which the total energy can

be estimated as a function of the different power lev-

els and the corresponding duty-cycles (i.e. the fraction

of time a power contribution is present). Therefore, in

the early days of WSN research the communication en-

ergy cost dominated the overall budget. Consequently,

a significant research effort has been made since then

to reduce this communication energy cost. The Medium

Access Control (MAC) layer design is crucial, since it

directly controls the transceiver determining the power

profile drain. The use of advanced MAC protocols has

helped in improving the energy efficiency of communi-

cation [5]. For example, ContikiMAC or TinyOS LPL

reach a duty-cycle as low as 1% [16] for low data rate

communication. In order to determine the processing

energy we need to know the duty-cycle of the processor.

This value, which is not usually published, can be read-

ily obtained using the tools described in [8] and [11].

For simple data collection applications (e.g. Multiho-

pOscilloscope of TinyOS and rpl-collect in ContikiOS,

described in Section 7) the measured processing duty-

cycle is about 3%. In this case the communication en-

ergy is just three times the processing energy. Nowa-

days, given the evolving scenario, efforts towards en-

ergy reduction should target both communication and

processing [21].

Concerning processing power optimization, there has

been a large amount of research in the last years, re-



Optimum design of a banked memory with power management for WSN 3

sulting in a variety of ultra-low-power processors. In

addition, it has been pointed out that the processor

spends most of its energy on memory access. Dally et

al. [7] provided a detailed energy breakdown of a con-

ventional RISC processor (SPARC V8). They presented

average energy values per operation disaggregated by

instruction supply, data supply, arithmetic, and clock

and control logic, representing 42% , 28%, 6% and 24%

of the total energy consumption respectively. The pre-

sented data is quite revealing, since it shows that the

processor spends most of its energy, 70% of the total

processor energy, accessing to memory for supplying

data and instructions. Moreover, Verma [27] illustrated

that the relative SRAM memory consumption in pro-

cessors increases as processors consumption decreases

by applying advanced design techniques. The proces-

sor with the lowest power consumption, among the sur-

veyed ones in [27], is a custom MSP430 processor with

16 KB SRAM cache, operating at 0.3 V [18], where

the embedded SRAM consumes 69% of the total pro-

cessor power. Hence, the energy consumption in ultra-

low-power processors is greatly dominated by memory

accesses.

In summary, reducing the power taken by näıve mem-

ory organizations enables more computationally demand-

ing algorithms to be implemented with the extra power

resources, expanding the range of WSN applications.

Moreover, the communication protocols are actually re-

stricted by the low computational capabilities and low

memory footprints of current low-power processors, hence

reducing the computational energy will enable to adopt

more complex communications protocols leading to fur-

ther optimizations to reduce the communication en-

ergy [15].

3 Related work

SRAM memory banking along with power management

to put memory banks into a sleep mode is a well known

technique. Ferrahi et al. [10] initially presented the mem-

ory partitioning problem to exploit the sleep mode op-

eration to minimize power consumption, showing that

it is a NP-hard problem, and that some special classes

are solvable in polynomial time. Results were obtained

for a set of synthetic data, randomly generated with

controlled parameters, and the effectiveness of the al-

gorithm was assessed by comparing to a random parti-

tioning algorithm.

This idea of reducing energy consumption by in-

creasing memory elements idleness has been applied

to scratchpad and cache memories in applications with

high performance requirements (see Loghi et al. [19] for

a brief survey).

Focusing on SRAM memory partitioning, Benini et

al. [2] applied this technique to highly data-intensive

application (e.g., digital filtering, transformations, stream

processing), which contain few control conditions. They

proposed a recursive bi-partitioning algorithm to solve

the memory partitioning problem using simulated ex-

ecution traces of a set of embedded applications. Gol-

ubeva et al. [13] continue this line of investigation, con-

sidering the availability of a low-leakage sleep state for

each memory block in a scratchpad memory. The par-

tition algorithm proposed is based on a randomized

search in the solution space. Finally, Loghi et al. [19]

proposed an optimal partitioning algorithm based on an

implicit enumeration of the partitioning solutions. They

proved a theoretical property of the search space ex-

ploited to reduce the number of partition boundaries to

be enumerated, making exhaustive exploration feasible.

A set of applications taken from the MiBench [14] ap-

plication suite were used to get execution traces. These

works consider splitting the address space into multiple,

contiguous memory banks. Consequently, the partition

algorithm is restricted to finding the optimal bound-

aries between the memory banks.

Ozturk and Kandemir [20] proposed a series of tech-

niques starting with the relocation and merge of mem-

ory blocks of the address space into memory banks,

relaxing the aforementioned restriction. They formu-

lated each of these techniques as an ILP (integer lin-

ear programming) problem, and solved them using a

commercial solver. They target also data-intensive em-

bedded applications (e.g. multimedia processing: image

and video), which manipulates multidimensional arrays

(with affine subscript expressions) of data using a se-

ries of nested loops (with compile time known bounds).

Therefore, a static compiler analysis is used to extract

data-access patterns, which in turn are the input for

finding the solution. The explored techniques include

nonuniform bank sizes, data migration, data compres-

sion, and data replication.

All mentioned works report energy savings in terms

of a relative percentage of some baseline, i.e., the con-

sumption of an equivalent monolithic memory. How-

ever, the presented results not only depend on the pro-

posed technique, the memory architecture or the par-

ticular case study, but also on the selected technology.

Since different technologies were chosen in each work,

the comparison between them is difficult.

We follow a methodology similar to the one em-

ployed in [20], in which a memory access trace is used

to solve an optimization problem for allocating the ap-

plication memory divided in blocks to memory banks.

Our work differs from the previous literature in three

main aspects. First, we propose using banked memories
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with power management for code memory, in this case

in WSN, exploiting the event-driven characteristics of

this class of application. Second, we address the power

management issue obtaining results for a greedy pol-

icy, one of the simplest possible management scheme,

and an oracle policy, representing the best prediction

algorithm. Therefore, we are able to assess the benefit

of adopting an advanced memory bank state manage-

ment. Finally, we derive expressions for energy savings

based on a detailed model that favors the analysis of

the different factors determining the effective energy

saving.

4 Banked memory with power management

The key idea of memory banking with power manage-

ment is to partition a memory in banks, which can be

individually put in a low-leakage sleep state to reduce

the static power. Since only one bank is active per ac-

cess, the remaining idle banks can be put into the sleep

state. However, the transition from sleep state to the

ready state (also known as standby state) has an en-

ergy cost by itself. As a consequence, the leakage saving

on the sleep state should compensate this bank wake-

up cost. The overall wake-up energy cost considering all

banks can be minimized by properly allocating the pro-

gram code into the different banks. Highly correlated

memory blocks allocated to the same bank leads to a

bank access pattern with a high temporal locality, thus

reducing the number of wake-ups. On the other hand,

the partitioning overhead due to sleep transistors, ex-

tra wiring and duplication of address and control logic

must be taken into account to find the optimum number

of banks. Another concern is the memory organization

that could be limited to equally-sized banks or could

allow any bank size. In this work we consider only par-

titioning the memory in uniform banks.

In summary, the energy saving achieved using this

technique highly depends on the selected number of

banks, together with the allocation of memory blocks

to the available banks. The proposed methodology is

based on using a memory access trace to solve an op-

timization problem. The application binary program is

divided in memory blocks, e.g. basic blocks or any other

arbitrarily defined. Then, the memory access trace is

obtained by simulation or execution of the program (di-

rectly from an executable format file) to get the ac-

cess trace to the defined blocks. The access pattern

to blocks and the memory configuration are input to

the optimization solver that outputs the block-to-bank

mapping that minimizes the energy consumption of the

banked memory. The optimization also outputs the ac-

tivation signals that control when a bank is sleeping or

ready to be accessed. The memory configuration speci-

fies the number of banks, the memory energy parame-

ters, and the power management strategy used to con-

trol the banks states. Finally, the energy saving is ob-

tained by simulating the application execution from the

banked memory, in which the original program code was

reallocated among the banks. Fig. 1 shows the described

process flow.

The process may be repeated for different numbers

of banks to find the optimum number by simply com-

paring the obtained energy saving in each step.

4.1 Memory power management

The memory bank states (sleep or ready) are defined

using a given power management strategy. This strat-

egy defines when a bank is put in sleep state and when

it is woken up, and therefore includes the information

if a bank remains in idle state even if it is not accessed.

The basis of the chosen strategy may range from a

very simple one to highly sophisticated prediction al-

gorithms [4]. The energy savings depend much on the

adopted strategy. Taking this into account, we consider

two power management strategies: a simple greedy pol-

icy and the best-oracle policy. In the greedy strategy,

as soon as a memory bank is not being accessed it is

put into sleep state. The greedy policy is one of the

simplest possible management schemes. Conversely, an

oracle policy is based on the best prediction algorithm

in the sense that follows. The optimization takes into

account the whole access trace, including information

of future access, to obtain the schedule of bank states

that maximize the energy savings. In this way, we are

able to assess the energy saving using two algorithms

in opposite ends in terms of complexity.

Subsequently, the power management module must

implement the algorithm in hardware. At runtime it

must manage the bank states in accordance with the

access patterns to the banks. The implementation of

the greedy power management is straightforward. As

soon as a new bank is accessed, it is woken up and

the previously active bank is put in sleep state. The

performance of the oracle policy that was obtained at

the optimization stage can not be achieved at runtime,

since there is no practical prediction algorithm that can

beat the off-line optimum oracle strategy based on an

execution trace. As a consequence, the energy saving

obtained by the oracle policy represents the maximum

achievable savings using any power management.
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Fig. 1 Design flow.

4.2 Banked memory energy model

In this section we present a general memory energy

model considering dynamic and static energy consump-

tion. Then, the dependence of the energy on the mem-

ory size is modeled. These models are the basis for de-

riving the energy consumption expressions for the dif-

ferent memory organizations and the different power

management strategies in Section 5.

4.2.1 Memory energy model

The static power consumed by a memory depends on

its actual state: ready or sleep. During the ready state

read or write cycles can be performed, but not in the

sleep state. Since the memory remains in one of these

states for a certain number of cycles, the static energy

consumed can be expressed in terms of energy per cy-

cle (Erdy and Eslp) and the number of cycles in each

state. Each memory access, performed during the ready

state, consumes a certain amount of energy (Eacc). The

ready period during which memory is accessed is usu-

ally called the active period, and the total energy spent

corresponds to the sum of the access and the ready en-

ergy (Eact = Eacc +Erdy), i.e., the dynamic and static

energy. On the other hand, the ready cycles without

access are called idle cycles, consuming only static en-

ergy (Eidl = Erdy). Each state transition from sleep to

active (i.e. the wake-up transition) has an associated

energy cost (Ewkp) and a latency penalty, considered

in Section 5.3.

Based on the parameters defined above, the total

energy consumption of a memory can be defined as

E = Eactnact + Eidlnidl + Eslpnslp + Ewkpnwkp, (1)

where nact, nidl and nslp are the number of the cycles

in which the memory is in active, idle and in sleep state

respectively, and nwkp is the number of times the mem-

ory switches from sleep to active state. We define the

ratios rk = nk/n for k ∈ {act, idl, slp, wkp} where n is

the elapsed number of cycles. So the average energy per

cycle is

Ē = Eactract + Eidlridl + Eslprslp + Ewkprwkp. (2)

4.2.2 Energy variation with memory size

The basis of memory banking is that the energy in-

creases with the size of the memory. Consequently, if

a single bank memory is partitioned in several banks,

each bank is expected to reduce its energy consump-

tion. In order to evaluate the energy saving appropri-

ately when a banked memory is adopted, we next model

the energy consumption of a memory as a function of

its size.

The energy values in Eq. (2), Eact, Eidl, Eslp and

Ewkp, are generally considered simply proportional to

the size of the memory [13]. We investigated the depen-

dence of the involved parameters on the memory size,

mainly using an estimation tool, CACTI [25]. However,

not all parameters can be obtained from CACTI.

Table 1 lists the energy parameters and the used

method to find the respective values. CACTI outputs

the dynamic energy and the leakage power. The former

value corresponds to the access energy of our model

(Eacc). The leakage power is used to calculate the en-

ergy leakage per cycle, i.e., the idle energy of our model

(Eidl), at the lowest maximum operating frequency among

all memory sizes. The active energy (Eact) is directly

computed (dynamic plus leakage).

The remaining energy parameters can not be de-

rived directly from CACTI, so they are estimated val-

ues. The energy consumed per cycle in the sleep state

(Eslp) is a fraction of the idle energy, since we suppose

that a technique based on reducing the supply voltage

is used to exponentially reduce the leakage. We assume

a reduction factor of the leakage in sleep state of 0.1,

which is a common value adopted in the literature [24,

19].

The wake-up transition is considered proportional

to the memory size. In the literature it is reported that

the proportionality constant respect to an access en-

ergy varies from about one [3] to hundreds [19]. In our

case we adopt this factor respect to the active energy.

We consider three different values to asses the impact

of the wakeup energy cost on the energy savings, the

aforementioned limits, i.e., one and one hundred, and

an intermediate value of ten.
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Table 2 Energy curve parameters as function of memory size.

Parameter a (nJ/B) b (adim.) Model
Eidl 3.28× 10−7 1.09 linear function
Eslp Eidl/10 same as Eilp linear function
Eacc 7.95× 10−5 0.48 square root function
Eact 1.78× 10−6 0.96 linear function
Ewkp K · Eact,K = {1, 10, 100} same as Eact linear function

Table 1 Energy parameters and method to find the respec-
tive values.

Parameter Method
Eacc read access: CACTI estimation
Eidl leakage: CACTI estimation
Eact direct calculation: Eacc + Eidl

Eslp estimation, Eidl/10
Ewkp estimation, K · Eact,K = {1, 10, 100}

We follow the described method to get a set of pa-

rameters for each memory size, ranging from 512 B to

256 KB (in a sequence of power of two), in order to

model the dependence of the memory energy with its

size. The CACTI memory configuration was set for a

pure RAM memory, one read/write port, 65 nm tech-

nology and a high performance ITRS transistor type.

Each energy parameter was considered at a time and

the values varying the memory size were fitted to a

power function E(S) = aSb, where E(S) is the energy

per cycle and S the memory size. The resulting fitting

coefficients (the proportionality constant a and the ex-

ponent b) and the model adopted are presented in Ta-

ble 2. Figure 2 shows all the energy estimated values

and the fitted curves.
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The dependence on the memory size of the energy

parameters obtained directly from CACTI can be ex-

plained by examining the simulation output and ana-

lyzing the relative contribution of each memory compo-

nent. The leakage energy in idle state grows nearly lin-

early, because the memory-cell leakage represents about

70% of the total energy and the number of memory-cells

is directly proportional to the memory size. The access

energy varies approximately as the square root of the

size. It can be observed that between 70% and 80% of

the dynamic energy come from bit-lines, sense amps,

and other resource shared between memory-cells. The

active energy (access plus idle, dynamic plus leakage),

finally ends up varying almost linearly with size (expo-

nent equal to one), because the leakage energy becomes

more important than the dynamic energy with increas-

ing size. However, for small footprints a exponent less

than one or a polynomial model should be used.

Hereafter, for sake of simplicity, we will work based

on simple models, that is the active, idle, sleep and

wake-up energy are proportional to the memory size:

Ek(S) = akS (3)

for k ∈ {act, idl, slp, wkp}, where S is the memory size

in bytes, and ak is the corresponding constant of pro-

portionality in Table 2.

5 Energy saving expressions

Using Eq. (3) the energy consumption of a bank of size

s in a banked memory of total size S can be modeled

as

Ek(s) = Ek
s

S
, (4)

where Ek = akS is the corresponding energy consump-

tion per cycle of the whole memory.

Now, considering a banked memory of N equally

sized banks Eq. (4) becomes

Ek

(
S

N

)
=
Ek

N
. (5)

The total energy consumption per cycle of the whole

banked memory is

ĒN =

N∑
i=1

Eact

N
racti +

Eslp

N
rslpi +

Ewkp

N
rwkpi , (6)

where the first two terms of the sum represent the ac-

tive and sleep energy as a function of the fraction of
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active and sleep cycles performed by each bank i. The

last term of the sum represents the wake-up energy as

a function of the average wake-up rate of each mem-

ory bank, that is, the average number of cycles elapsed

between two consecutive bank transitions from sleep to

active (for example, one transition in 1000 cycles).

5.1 Energy saving for the greedy policy

When a greedy strategy is used each bank is either in

active or sleep state (there are no idle cycles), rslpi =

1− racti , and one obtains

ĒN = Eslp+

N∑
i=1

1

N
(Eact − Eslp) racti +

Ewkp

N
rwkpi

. (7)

Since there is only one bank active per cycle, the sum

of the active cycles for all banks is the total number of

cycles

N∑
i=1

racti = 1 (8)

so Eq. (7) simplifies to

ĒN =
Eact

N
+

(
N − 1

N

)
Eslp +

Ewkp

N

N∑
i=1

rwkpi . (9)

We define the energy savings of a banked memory

as the relative deviation of the energy consumption of a

single bank memory which is always active (E1 = Eact)

δE =
E1 − ĒN

E1
. (10)

Thus, the energy saving of a banked memory of N

uniform banks is

δEgreedy
N =

N − 1

N

(
1− Eslp

Eact

)
− 1

N

Ewkp

Eact

N∑
i=1

rwkpi
.

(11)

The first term is related to active consumption re-

duction, coming from having N−1 banks in sleep state

and only one bank in active state. The last term, which

is related to the cost of wake-ups, depends on the ac-

cumulated wake-up rate and is directly proportional to

the wake-up to active energy ratio, and inversely pro-

portional to the number of banks.

In order to maximize the energy saving in a mem-

ory having N uniform banks, the optimization algo-

rithm must minimize the accumulated wake-up rate.

Note that the optimum content distribution among the

banks does not depend on the wake-up cost, but rather

the wake-up cost determines the final energy saving.

Furthermore, note that the energy saving does not de-

pend on the access profile among the banks, since the

access to every bank costs the same as all banks have

the same size. Still, the allocation of blocks to banks

must consider the bank size constraint. Finally, the en-

ergy saving can be improved by increasing N and at

the same time keeping the accumulated wake-up rate

low. The maximum achievable saving corresponds to

the sleep to active rate, which is equivalent to have the

whole memory in sleep state. Even so, the partition

overhead limits the maximum number of banks.

5.2 Energy saving for the oracle policy

Consider a memory with a power management, different

from greedy, by means of which a bank may remain in

idle state, even if it will not be immediately accessed.

In this case the total number of cycles is n = nacti +

nidli + nslpi
for all banks, so racti + ridli + rslpi

= 1. In

a similar way to the greedy policy, the expression for

the energy savings can be determined as:

δEoracle
N =

N − 1

N

(
1− Eslp

Eact

)
− 1

N

(
Eidl − Eslp

Eact

) N∑
i=1

ridli −

− 1

N

Ewkp

Eact

N∑
i=1

rwkpi . (12)

Compared to Eq. (11), Eq. (12) has an additional term,

which is related to the energy increase caused by the

idle cycles. This does not necessarily imply that the

energy saving is reduced, since the accumulated wake-

up ratio may decrease. This expression generalizes the
model for the greedy strategy, which is obtained by set-

ting ridl equal to zero for all banks.

5.3 Effective energy saving

As mentioned previously, the wake-up transition from

sleep to active state of a bank memory has an associated

latency. This latency forces the microprocessor to stall

until the bank is ready. The microprocessor may remain

idle for a few cycles each time a new bank is woken

up, incrementing the energy drain. This extra micro-

processor energy can be included in the bank wake-up

energy and for simplicity we will not consider it explic-

itly. If the wake-up rate is small and the active power

of the microprocessor is much higher than idle power,

this overhead can be neglected. Additionally, the ex-

tra time due to the wake-up transition is not an issue

in low duty-cycle applications, since it simply increases

the duty-cycle slightly.
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On the other hand, the partitioning overhead must

be considered to determine the effective energy sav-

ing. A previous work had characterized the partitioning

overhead as a function of the number of banks for a par-

titioned memory of arbitrary sizes [19]. In that case the

hardware overhead is due to an additional decoder (to

translate addresses and control signals into the mul-

tiple control and address signals), and the wiring to

connect the decoder to the banks [2]. As the number

of memory banks increases, the complexity of the de-

coder is roughly constant, but the wiring overhead in-

creases [19]. The partition overhead is proportional to

the active energy of an equivalent monolithic memory

and roughly linear in the number of banks, as can be

clearly seen by inspecting the data of the aforemen-

tioned work (3.5%, 5.6%, 7.3% and 9% for a 2-, 3-, 4-,

and 5-bank partitions, resulting in an overhead factor

of approximately 1.8% per bank).

Consequently, the relative overhead energy can be

modeled as:

δEovhd
N = kovhdN. (13)

In this work, the memory is partitioned into equally-

sized banks. As a result the overhead is expected to

decrease leading to a lower value for the overhead fac-

tor.

The maximum effective energy saving, including the

partition overhead, can be expressed subtracting Eq. (13)

from Eq. (11) for the greedy policy and from Eq. (12)

for the oracle policy. The maximum energy savings can

be found for both cases as the idle contributions (for

the oracle policy) and the wake-up contributions (for

both policies) tend to zero:

δEmax
N =

N − 1

N

(
1− Eslp

Eact

)
− kovhdN. (14)

δEmax
N presents a maximum for

Nopt =

√
1

kovhd

(
1− Eslp

Eact

)
. (15)

The memory energy model along with the partition

overhead, modeled as being proportional to the num-

ber of banks, allows to find an estimated value of the

optimum number of banks.

6 Problem Formulation

In this section we define an integer linear program that

minimizes the energy consumption of a banked memory

with power management by optimally distributing the

application code divided in blocks to memory banks.

The memory has N memory banks B = {1, . . . , N},
of equal size sb, b ∈ B.

The application code is divided in M memory blocks

D = {1, . . . ,M} of size sd, d ∈ D. We are further given

an access pattern to these blocks over time by adt. A

value of adt = 1 indicates that block d is accessed at

time t. We want to determine an allocation of blocks to

banks that respects the size constraints, and an activa-

tion schedule of the banks that minimizes total energy

consumption, and such that banks that are accessed at

time t are ready at time t. Let ldb ∈ {0, 1} indicate that

block d is allocated to bank b, and obt ∈ {0, 1} that

bank b is ready at time t. We define auxiliary indicator

variables abt ∈ {0, 1} representing the access of bank b

at time t, o+bt ∈ {0, 1} representing the wake-up transi-

tion of bank b at time t. Let further T = {1, . . . , t} be

set of access times. We assume that time 0 represents

the initial state where all banks are in sleep state. For a

given number of banks, the partition overhead is fixed,

hence the problem formulation does not need to include

this term.

Now we can model the problem of finding the alloca-

tion and power management strategy by the following

integer program:

minimize
∑
t∈T
b∈B

Eaccabt + Erdyobt + Ewkpo
+
bt (16)

subject to

o+bt ≥ obt − ob,t−1 ∀b ∈ B, t ∈ T (17)

obt ≥ abt ∀b ∈ B, t ∈ T (18)

abt =
∑
d∈D

lbdadt ∀b ∈ B, t ∈ T (19)∑
b∈B

ldb = 1 ∀d ∈ D (20)∑
d∈D

ldbsd ≤ sb ∀b ∈ B (21)

ob0 = 0 ∀b ∈ B (22)

ldb ∈ {0, 1} d ∈ D, b ∈ B (23)

obt ∈ {0, 1} b ∈ B, t ∈ T ∪ {0} (24)

o+bt, abt ∈ {0, 1} b ∈ B, t ∈ T . (25)

Eq. (17) defines wake-up transitions: if some bank is

ready at time t, but has not been ready at time t− 1, a

wakeup transition occurred.1 Eq. (18) and (19) define

the access pattern for a given allocation. Restriction

(20) guarantees that every block has been allocated to

exactly one memory bank, and restriction (21) limits

the total size of the allocated blocks to the size of the

bank.

1 Since the variables involved in the inequalities are binary,
a ≥ b corresponds to the logical implication, a⇒ b.
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The above formulation corresponds to the best-oracle

strategy, since it does not limit the activation schedules.

For a greedy power management the constraint (18) can

be modified, so that a bank is ready only when it is ac-

cessed.

obt = abt ∀b ∈ B, t ∈ T. (26)

7 Experiments

In order to assess the whole energy savings, it is needed

to determine, first, the relative importance of the mem-

ory in the overall mote energy consumption, and sec-

ond, the energy reduction in the memory subsystem

when the proposed technique is adopted.

The benchmarks previously used for memory en-

ergy evaluation, such MiBench [14], are not adequate

for evaluating our memory architecture. In most cases,

each benchmark is the implementation of an algorithm

compiled as an independent application. The applica-

tion, executed in batches, usually reads data inputs for

the algorithm form files and outputs the processing re-

sults to the console or to a file. The motes have a limited

amount of memory, and usually do not have a file sys-

tem, preventing using Mibench in motes as is. But the

main limitation is that they do not capture the external

event timing [1] needed to evaluate the memory regions

that are idling. So, we inclined towards using real WSN

applications for our case studies.

The criteria for selecting the cases were: public avail-

ability of source files, realistic and ready-to-use appli-

cation. We intentionally left out simple code examples

that do not reflect the requirements of complex real-life

systems. Unfortunately, the number of cases comply-

ing with the aforementioned restrictions are scarce. We

chose two data-collection applications from the stan-

dard distribution of TinyOS (version 2.1.0)2 and Con-

tikiOS (release 2.5)3. Both applications are similar, each

node of the network periodically samples a sensor and

the readings are transmitted to a sink node using a net-

work collection protocol. MultihopOscilloscope (TinyOS)

uses CTP (Collection Tree Protocol) [12] and rpl-collect

(ContikiOS) uses RPL (IPv6 Routing Protocol for Low

power and Lossy Networks) [28].

The applications were compiled for a telosb node [22]

based on a MSP430 microcontroller4. Table 3 summa-

rizes the section sizes of the selected applications. It can

be observed that in both cases the code memory (text

segment) is between five and nine times larger than the

2 www.tinyos.net
3 www.contiki-os.org
4 www.ti.com/msp430

data memory (bss plus data segment). This relation-

ship, which is typical in WSNs applications, motivates

using a banked memory with power management for

code memory rather than for data memory.

For the purpose of estimating the relative weight

of the memory subsystem in the overall energy bud-

get, we considered, first, that the memory energy con-

sumption represents a fixed amount of the total pro-

cessor consumption. Second, we estimated the energy

contribution of the processing (including the memory

energy) and the communication activities, using the

Energest module on a mote operating in the field run-

ning the rpl-collect application. Energest [8], included

in the ContikiOS distribution, measures the accumu-

lated time spent in the different power levels of the

microcontroller and the radio of a mote operating in

the field. The power levels associated to the different

power states of the microcontroller and the radio were

measured in the laboratory. Finally, each average power

contribution is computed as the measured duty-cycles

multiplied by the corresponding power level.

The mote program memory is allocated to the banked

memory by solving the aforementioned optimization

problem using memory access traces. Since current sen-

sor nodes do not support real-time execution trace gen-

eration, we simulated the network using COOJA [9].

The telosb node-level simulation relies on MSPsim, an

instruction-level emulator for the MSP430 microcon-

troller, which also simulates hardware peripherals such

as sensors, radio modules or LEDs. MSPSim is designed

to be used as a COOJA plug-in, allowing to access to

the MSPSim command-line client from COOJA. We

modified MSPSim’s code to add a new command for
controlling the debug mode, so that it is possible to ob-

tain any node execution trace from COOJA. For the

experiments we set up an unique scenario based on a

configuration consisting of a network composed of 25

nodes. The memory access traces were trimmed to con-

sider 5000 cycles. The size of the blocks could be cho-

sen regular (equally sized) or irregular, ranging from the

minimum basic blocks to an arbitrary size. For the sake

of simplicity, the block set was selected as those defined

by the program functions and the compiler generated

global symbols (user and library functions, plus those

created by the compiler). The size of the blocks ranges

from tens to hundreds of bytes, in accordance with the

general guideline of writing short functions, consider-

ing the run-to-completion characteristic of TinyOS and

any non-preemptive event-driven software architecture,

such as ContikiOS. The energy parameters for the mem-

ory are as described in Table 2 in Section 4. The total

memory size was considered 10% larger than the appli-

cation size, to ensure the feasibility of the solution.
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Table 3 Application parameters (size in bytes).

OS Application text bss data #functions
TinyOS MultihopOscilloscope 32058 122 3534 1081

ContikiOS rpl-collect (udp-sender) 47552 232 9250 489

For each experiment the bank memory access pat-

terns abt have been determined using the trace adt and

the allocation map lbd. For the best-oracle power man-

agement the solution also outputs obt, the bank states

for each cycle (i.e.,ready or sleep). The average energy

consumption is calculated using the memory energy pa-

rameters and the energy saving is determined by com-

paring with a single bank memory with no power man-

agement. We repeated the experiment up six banks,

for both power management strategies, comparing the

predicted energy savings by our model to the optimal

energy savings obtained for different number of banks

and wake-up energy cost.

Finally, the overall mote energy savings is estimated

using the memory savings achieved using the optimal

number of banks, and the relative weight of the memory

consumption in the total energy budget.

8 Results and Discussion

In this section we present the results of the experiments

described previously. First, we present the memory en-

ergy savings achieved using our proposal. We compare

the predicted energy savings by our model to the op-

timal energy savings obtained by solving the ILP for

different number of banks, power managements poli-

cies and wake-up energy cost. Next, the overall system

energy savings are estimated for different workload sce-

narios.

8.1 Memory energy savings

Fig. 3 shows the energy savings for the intermediate

value of wake-up energy (ten times the active energy)

as a function of the number of banks for best-oracle and

greedy policy in both applications (based on TinyOS

and ContikiOS). As the number of banks increases,

the energy savings approach the corresponding value

of having all banks in sleep state. In this figure we have

intentionally discarded the partition overhead, consid-

ered later. The figure shows that the oracle policy out-

performs the greedy policy for both applications, as ex-

pected, and both are within 2% and 5% of the theo-

retical limit for the energy savings. In all cases, except

for six banks, ContikiOS outperforms TinyOS by a nar-

row margin. The results presented hereafter are similar
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Fig. 3 Energy savings as a function of the number of
banks for best-oracle and greedy policy (denoted gr and or)
in TinyOS and ContikiOS applications (denoted TOS and
COS) and the theoretical limit (dashed line).

for both applications, and only the corresponding to

TinyOS are analyzed more deeply.

Fig. 4 shows the fraction of cycles and the energy

breakdown for a memory having five banks of equal size,

where each contribution (i.e., access, ready, sleep, wake-

up) is averaged among the different banks. The upper

part clearly shows that the fraction of access cycles is

equal in both cases and represents 20% of the total

number of cycles, since five banks are considered (only

one bank of N is active, in this case five).

For the greedy policy the number of ready cycles is

equal to the access cycles, since both correspond to the

active compound state. On the other hand, for the ora-

cle policy part of the ready cycles correspond to active

cycles, and the rest to idle cycles, in which the banks

are ready but not accessed. Moreover, for the greedy

policy 80% of the cycles are sleep cycles (N − 1 banks

are in sleep state) while for the oracle policy this per-

centage is slightly larger, used to reduce the wake-up

cycles from 0.5% to 0.12 % (not visible in Fig. 4). The

energy breakdown, Fig. 4 (lower part), shows that the

difference between oracle and greedy comes mainly from

the wake-up transitions. In this case study, due to its

event-driven nature, the code memory access patterns

are triggered by events, leading to a chain of function

calls starting with the interrupt subroutine. This chain

may include the execution of subsequent functions calls

starting with a queued handler function called by a ba-

sic scheduler. The allocation of highly correlated func-
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Fig. 4 Fraction of cycles and energy breakdown where each
contribution is averaged among the different banks.

Table 4 Optimum number of banks as a function of partition
overhead.

kovhd(%) 0 1 2 3 5
Nopt ∞ 10 7 6 4

δEmax
N,eff (%) 98.2 78.3 70.1 63.8 53.6

tions to the same bank leads to a bank access pattern

with a high temporal locality. Hence, the total wake-up

fraction across the banks is very low. This explains the

modest gain of applying the best-oracle policy.

The optimum number of banks estimated using Eq. (15)

(after rounding) as a function of kovhd (1%, 2%, 3%

and 5%) is shown in Table 4. The energy savings is lim-

ited by the partition overhead, reaching a maximum of

78.3% for an overhead of 1%. The energy saving limit,

as the partition overhead tends to zero and N to infinity,

is 98.2% (1− Eslp/Eact).

Table 5 compares the energy saving results as a

function of the number of banks and the partition over-

head. In the upper part, the table gives the maximum

achievable savings calculated using Eq. (14). It can be

observed that with a partition overhead of 3% the opti-

mum number of banks is six, whereas with 5% is four,

both highlighted in gray. In the middle part of the ta-

ble it can be observed that the maximum energy sav-

ing for greedy strategy with 3% and 5% of partition

overhead is achieved for six and five banks respectively,

different from the estimated value using the maximum

achievable savings. This means that the saving loss due

to wake-up transitions shifts the optimum number of

banks. Similar results are obtained for the best-oracle

strategy, but with higher energy savings.

Finally, Fig. 5 shows the energy savings for different

wake-up energy costs: one, ten (analyzed so far) and one

hundred. It can be seen that for high wake-up energy

costs the oracle policy outperforms the greedy policy by

ten percentage points, while for a low wake-up cost the

Table 5 Energy saving comparison: maximum, greedy and
oracle.

maximum number of banks
2 3 4 5 6

kovhd(%)
1 47.08 62.44 69.62 73.53 75.80
2 45.08 59.44 65.62 68.53 69.80
3 43.08 56.44 61.62 63.53 63.80
5 39.08 50.44 53.62 53.53 51.80

greedy number of banks
2 3 4 5 6

kovhd(%)
1 43.82 58.33 65.18 69.36 71.99
2 41.82 55.33 61.18 64.36 65.99
3 39.82 52.33 57.18 59.36 59.99
5 35.82 46.33 49.18 49.36 47.99

oracle number of banks
2 3 4 5 6

kovhd(%)
1 46.40 61.88 69.12 73.07 75.41
2 44.40 58.88 65.12 68.07 69.41
3 42.40 55.88 61.12 63.07 63.41
5 38.40 49.88 53.12 53.07 51.41
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1 10 100
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100
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banks

%
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Fig. 5 Energy savings as a function of the number of banks
for best-oracle and greedy policy (denoted gr and or) for
increasing wake-up cost factor (TinyOS application.

difference is marginal. The energy increase due to the

wake-up transitions, the last factor in Eqs. (11) and (12)

is proportional to the wake-up cost. This saving lost can

be reduced using the oracle policy by increasing the idle

cycles with low relative energy cost.

In summary, a huge energy saving in the memory

subsystem can be obtained using a banked memory,

achieving close to 80% energy reduction for a partition

overhead of 1% with a memory of ten banks with mod-

erate wake-up cost.

8.2 Overall system energy savings

Table 6 shows the power reduction in a processor when

a banked memory as the proposed in the present work is

adopted. All values are normalized to the active power

of the original processor. If the memory consumption
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Table 6 Power reduction in processing due to memory op-
timization (relative to original processor).

Power original w/banked mem.
Total 1 0.46

Memory 0.69 0.15
The rest 0.31 0.31

Table 7 Average power (energy) reduction in rpl-collect ap-
plication, estimated using measured duty-cycles.

duty-cycle (%)
original w/banking mem.

Pinst Pavg Pinst Pavg

Processing 3.19 1 0.0319 0.4598 0.0146
Communication 0.54 10 0.0543 10 0.0543

Sleep 96.81 0.005 0.0048 0.005 0.0048
Total 0.0910 0.0737

represents 69% of the total energy (as discussed in Sec-

tion 2) and it is reduced by 78.3% (the maximum achiev-

able when using ten banks with a partition overhead of

1%) the total processor consumption is reduced from

1 to 0.46, i.e. the processor consumption is reduced by

54%.

The measured duty-cycles of a node running the

rpl-application are shown in Table 7. The node is pro-

cessing (processor active) 3.19% of the time, commu-

nicating (radio transmitting or receiving) 0.54%, and

the node is in sleep mode 96.81% of the time. The ta-

ble also shows the respective instantaneous and aver-

age power (duty-cycle multiplied by the instantaneous

power), and the total power. Next, it is presented the in-

stantaneous power consumption for a node with a pro-

cessor with a banked memory with power management

(radio and sleep power remains unchanged), and the

average power for the same set of duty-cycles. Results

shows a reduction of 18.9% in the total power consump-

tion, including radio communication consumption and

sleep power.

These example application do not process the ac-

quired data, but simply send the raw data to a sink,

so that the processing workload corresponds only to

protocol stack and OS housekeeping. Ko et. al. [17] re-

view emerging wireless sensing applications that involve

high-performance or high-resolution signal processing,

together with their platform requirements, particularly

processing power and energy consumption. For rela-

tive high-frequency sampling applications (e.g. struc-

tural health monitoring acquiring vibrations signals,

some medical signal such as ECG), the processing work-

load would rise the duty-cycle, thus incrementing pro-

cessor active power and the opportunity of energy sav-

ings.
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Fig. 6 Overall energy savings as a function of the processing
and communication duty-cycles.

The final overall savings depends on many factors,

such as the relative importance of the memory con-

sumption in the processor, the processing and com-

munication requirements of protocols and applications.

Fig. 6 shows the overall savings varying the processing

and communication duty-cycles. The left part of the fig-

ure shows the saving as the communication duty-cycles

varies from 0% to 1.5% for increasing processing duty-

cycles (from 3% to 9%). For reduced communication

duty-cycle the associated average power becomes in-

creasingly negligible, and the overall saving approach to

the processor saving, close to 54% (limited only by the

sleep power). The right part of the figure shows the sav-

ing as the processing duty-cycles varies from 0% to 10%

for different communication duty-cycles (from 0.5% to

1.5%). For high-performance processing workload the

processor’s memory consumption becomes more impor-

tant and the savings rise. Let’s consider the measured

duty-cycle in the rpl-application as a point of reference,

close to 0.5% for communication and 3% for processing.

If the processing duty-cycle triples, reaching 9%, the

overall consumption reduction rises from 19.1% (point

marked as a blue dot in Fig.6) to 33.6% (point marked

as a black diamond).

9 Conclusions

We have found that aggressive energy savings in the

memory subsystem can be obtained using a banked

memory with up to 78.3% energy reduction for a parti-

tion overhead of 1% with a memory of ten banks. The

energy savings increase as a function of the number

of banks. The maximum saving is limited by the parti-

tion overhead. An estimation of the optimum number of

banks can be obtained at design time, using the energy

memory parameters values and the partition overhead.



Optimum design of a banked memory with power management for WSN 13

We evaluated the benefits of using a partitioned

memory in WSNs by simulation of two real WSN ap-

plications, one based on TinyOS and the other on Con-

tikiOS. The energy saving is maximized by properly

allocating the program memory to the banks in order

to minimize the accumulated wake-up rate and the idle

cycles. The optimum number of banks may differ from

the estimated value, because of the saving loss due to

wake-up transitions. Nevertheless, the estimated value

can be used to quickly find the optimum, by restricting

the search to its vicinity.

The energy saving obtained by simulations were com-

pared with the limits given by the derived expressions,

showing a good correspondence. The oracle policy out-

performs the greedy policy as expected. However, the

extra benefit of the oracle over the greedy policy is sig-

nificant only for high wake-up energy costs. Conversely,

for relative low wake-up energy costs, the difference be-

tween oracle and greedy is scarce, and the additional

benefit of using an advanced algorithm to predict future

access to banks must justify the increased complexity

and compensate the extra energy and area cost.

The effective overall savings obtained naturally de-

pends on the relative weight of the memory consump-

tion within the processor (compared to the arithmetic,

logic and so on), the processing workload and commu-

nication average power. Our experiments indicates that

reducing the memory energy by 78.3% would reduce the

overall energy in about 19%, including the radio and

sleep power. Our proposal has a major impact on ap-

plications with heavy processing requirements, where

the processing duty-cycle triples the measured in the

considered case study, reaching energy savings close to

34%.

We are currently extending our model to support

arbitrary sized banks.
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