english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42687 Cómo citar
Título: Comparing different labeling strategies in anomalous power consumptions detection
Autor: Rodríguez, Fernanda
Lecumberry, Federico
Fernández, Alicia
Tipo: Ponencia
Palabras clave: Electricity fraud, Support vector machine, Optimum Path, Forest, Unbalance class problem, Combining classifier, UTE
Descriptores: Procesamiento de Señales
Fecha de publicación: 2015
Resumen: Detecting anomalous events is a complex task, specially when it should be performed manually and for several hours. In the case of electrical power consumptions, the detection of non-technical losses also has a high economic impact. The diversity and big number of consumption records, makes it very important to find an efficient automatic method for detecting the largest number of frauds. This work analyses the performance of a strategy based on learning from expert labeling: suspect/no-suspect, with one using inspection labels: fraud/no-fraud. Results show that the proposed framework, suitable for imbalance problems, improves performance in terms of the Fmeasure with inspection labels, avoiding hours of experts labeling.
Descripción: Trabajo presentado en nternational Conference on Pattern Recognition Applications and Methods, 2014
Citación: Rodríguez, F, Lecumberry, F, Fernández, A. "Comparing different labeling strategies in anomalous power consumptions detection". Publicado en: Fred, A., De Marsico, M., Tabbone, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2014. Lecture Notes in Computer Science, v. 9443. Springer, Cham. https://doi.org/10.1007/978-3-319-25530-9_13
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imágenes
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
RLF15.pdf786,6 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons