Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/42687
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rodríguez, Fernanda | es |
dc.contributor.author | Lecumberry, Federico | es |
dc.contributor.author | Fernández, Alicia | es |
dc.date.accessioned | 2024-02-26T19:52:38Z | - |
dc.date.available | 2024-02-26T19:52:38Z | - |
dc.date.issued | 2015 | es |
dc.date.submitted | 20240223 | es |
dc.identifier.citation | Rodríguez, F, Lecumberry, F, Fernández, A. "Comparing different labeling strategies in anomalous power consumptions detection". Publicado en: Fred, A., De Marsico, M., Tabbone, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2014. Lecture Notes in Computer Science, v. 9443. Springer, Cham. https://doi.org/10.1007/978-3-319-25530-9_13 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/42687 | - |
dc.description | Trabajo presentado en nternational Conference on Pattern Recognition Applications and Methods, 2014 | es |
dc.description.abstract | Detecting anomalous events is a complex task, specially when it should be performed manually and for several hours. In the case of electrical power consumptions, the detection of non-technical losses also has a high economic impact. The diversity and big number of consumption records, makes it very important to find an efficient automatic method for detecting the largest number of frauds. This work analyses the performance of a strategy based on learning from expert labeling: suspect/no-suspect, with one using inspection labels: fraud/no-fraud. Results show that the proposed framework, suitable for imbalance problems, improves performance in terms of the Fmeasure with inspection labels, avoiding hours of experts labeling. | es |
dc.language | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Electricity fraud | es |
dc.subject | Support vector machine | es |
dc.subject | Optimum Path | es |
dc.subject | Forest | es |
dc.subject | Unbalance class problem | es |
dc.subject | Combining classifier | es |
dc.subject | UTE | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | Comparing different labeling strategies in anomalous power consumptions detection | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RLF15.pdf | 786,6 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons