english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42675 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPérez Zerpa, J.Mes
dc.contributor.authorCanelas, Aes
dc.contributor.authorSensale Cozzano, Berardies
dc.contributor.authorBia, Danieles
dc.contributor.authorArmentano, Ricardo Les
dc.date.accessioned2024-02-26T19:52:34Z-
dc.date.available2024-02-26T19:52:34Z-
dc.date.issued2015es
dc.date.submitted20240223es
dc.identifier.citationPérez Zerpa, J.M, Canelas, A, Sensale, B, Bia Santana, D, Armentano, R.L. "Modeling the arterial wall mechanics using a novel high-order viscoelastic fractional element" Applied Mathematical Modelling, v. 39, no. 16, 2015, pp: 4767-4780, doi https://doi.org/10.1016/j.apm.2015.04.018.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/42675-
dc.description.abstractThe fractional viscoelastic models (FVMs) have provided promising results for modeling the behavior of complex materials such as polymers and living tissues. These viscoelastic models are composed by springs, dashpots and the fractional element called spring-pot. In this paper we prove that the accuracy of these models can be improved through the use of a modified version of the spring-pot element, called high-order spring-pot (HOSP). We describe and implement a numerical method for characterization of mechanical properties of FVMs. The method consists of minimizing the misfit among experimental measures of strains or stresses and the respective values predicted by the model. The method is validated by solving four numerical examples. In the first three examples the data is artificially generated using different models such as the Double Maxwell-arm Wiechert one. The characterization is performed using FVMs models including the traditional spring-pot element and the new HOSP element proposed in this article. In these examples we assume small strains and homogeneous material properties. In a final example the method is applied to the characterization of the mechanical properties of FVMs using stress–strain data obtained from in vitro ovine arterial wall measurements reported in the literature. The results obtained show that the proposed method properly determines the mechanical parameters even in presence of noise in the data. In addition, it is evident from the results that the proposed modification of the spring-pot element increases the accuracy of the FVMs models. The results obtained allow us to conclude that the FVMs can model better the behavior of complex materials when a HOSP element is included. In particular, it was shown that these models are appropriate for modeling the arterial wall mechanics with higher accuracy, as well as other materials with complex behavior.es
dc.languageenes
dc.publisherElsevieres
dc.relation.ispartofApplied Mathematical Modelling, v. 39, no 16, 2015, pp. 4767–4780es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectInverse problemses
dc.subjectViscoelasticityes
dc.subjectFractional viscoelasticity modelses
dc.subjectArterial wall mechanicses
dc.titleModeling the arterial wall mechanics using a novel high-order viscoelastic fractional elementes
dc.typeArtículoes
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doihttps://doi.org/10.1016/j.apm.2015.04.018es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
PCSBA15.pdf901,06 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons