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a b s t r a c t

The fractional viscoelastic models (FVMs) have provided promising results for modeling
the behavior of complex materials such as polymers and living tissues. These viscoelastic
models are composed by springs, dashpots and the fractional element called spring-pot.
In this paper we prove that the accuracy of these models can be improved through the
use of a modified version of the spring-pot element, called high-order spring-pot (HOSP).

We describe and implement a numerical method for characterization of mechanical
properties of FVMs. The method consists of minimizing the misfit among experimental
measures of strains or stresses and the respective values predicted by the model. The
method is validated by solving four numerical examples. In the first three examples the
data is artificially generated using different models such as the Double Maxwell-arm
Wiechert one. The characterization is performed using FVMs models including the tradi-
tional spring-pot element and the new HOSP element proposed in this article. In these
examples we assume small strains and homogeneous material properties. In a final exam-
ple the method is applied to the characterization of the mechanical properties of FVMs
using stress–strain data obtained from in vitro ovine arterial wall measurements reported
in the literature.

The results obtained show that the proposed method properly determines the mechan-
ical parameters even in presence of noise in the data. In addition, it is evident from the
results that the proposed modification of the spring-pot element increases the accuracy
of the FVMs models. The results obtained allow us to conclude that the FVMs can model
better the behavior of complex materials when a HOSP element is included. In particular,
it was shown that these models are appropriate for modeling the arterial wall mechanics
with higher accuracy, as well as other materials with complex behavior.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The behavior of viscoelastic materials is usually represented by simple models composed by elastic and viscous elements,
which may be linear springs and dashpots, respectively. These rheological models have been widely used for modeling the
behavior of several materials, such as concrete [1]. In [2,3] it is pointed out that living tissues behavior should be generally
considered viscoelastic, and we can find in the literature applications of these models to the modeling of a broad set of living
tissues [4–6]. There exists a particular interest in the modeling of the arterial wall behavior, motivated by the relevance of
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the Atherosclerotic Cardiovascular Disease (ACD) in the human death toll [7]. Viscoelastic models have been widely applied
to the arterial wall mechanics modeling [8,9]. However, Lakes [10] pointed out that simple models composed by a small
number of springs and dashpots must be used only with a pedagogic purpose, since real materials are not usually describable
by these models. This statement have been confirmed by Wang et al. [6] who have shown that by increasing the number of
elements ones improves the accuracy of the rheological models applied to the modeling of living tissues.

We note also that there are many papers in the literature dealing with the development of complex nonlinear elastic
models for arterial wall modeling. In particular, the arterial wall tissue is anisotropic, and has been modeled considering his-
tological information such as the fiber orientation in each layer [11]. Recently, nonlinear effects have also been considered in
viscoelastic models [12]. In this article we do not consider neither geometric nor material nonlinearities.

Fractional viscoelastic models (FVMs) are those that include at least one fractional element, also known as spring-pot. The
spring-pot element represents an intermediate behavior between a linear spring and a linear dashpot. This intermediate
behavior is mathematically represented by defining the stress proportional to the fractional derivative of the strain, i.e.
r / Dae, where the derivative order a is considered another mechanical parameter, called fractional parameter. To the
authors knowledge, in all applications of FVMs considered in the literature, the fractional parameter is a real number within
the interval ½0;1�.

The first applications of fractional models were reported in the early twentieth century [13]. Throughout the years the
interest in the matter have been increasing and important aspects were improved such as new mathematical definitions
of the fractional derivative with appropriate physical interpretations [14,15]. In the 80’s, Bagley and Torvik [16] presented
links between molecular theories and macroscopic fractional viscoelastic models. Since then, they and other authors
[17,18] have contributed to the determination of algebraic constraints for the material parameters of the models taking into
account thermodynamics constraints.

FVMs are recognized to be well suited for modeling the behavior of real complex materials such as anisotropic structural
elements [19], polymers [20,21] and chemical compounds [14]. For living tissues, the FVMs have been successfully applied to
the characterization of cells mechanical properties [22], as well as the modeling of the arterial wall mechanics [23–25].

The use of several springs and dashpots in certain arrangements provides constitutive equations with integer derivative
orders higher than one. Recently, it was shown that the use of these models produces accurate results [26]. In this paper we
use a fractional element that we call high-order spring-pot (HOSP), which is defined by setting the upper bound of the frac-
tional parameter equal to 2. We use FVMs with one HOSP and prove its ability to reproduce the behavior of complex models
with higher accuracy. In Appendix B, it is presented a thermodynamic justification of this new upper bound.

In Section 3 we describe a method for characterization of mechanical parameters of FVMs, including the fractional param-
eter. The numerical method obtains the parameters by solving a nonlinear optimization problem, using a fitness function
that depends on the coefficients of the discrete Fourier transform of the given data.

In Section 4 a validation of the proposed method that is performed by studying some examples with numerically gener-
ated and experimental data is presented. The experimental data used in this paper is part of the data presented in [9], and
consists of measurements of pressure and diameter of arterial wall segments of healthy sheeps. The results obtained show
that the HOSP provides higher accuracy in the modeling of the behavior of complex materials when compared against the
traditional spring-pot.

Preliminary results of this work were presented in [27]. A more detailed description of the characterization method is
presented here, and the theoretical justification about the use of the HOSP element is published in this paper for the first
time. Some new insightful examples are presented, as well as a deeper discussion of the results and the advantages of
the HOSP element over the traditional spring-pot for the modeling of living tissues.

2. Preliminaries

In this section we present the basic concepts of fractional calculus, some important properties of the Fourier transform
and the three viscoelastic models used through the article.

2.1. Fractional calculus

The fractional calculus theory introduces and studies several possible generalizations of the concept of derivative of a
function of real number or even complex number order. During the twentieth century it has been used as an appropriate
approach for modeling the behavior of viscoelastic materials [16]. In this field, the derivatives of a real number order, also
called fractional derivatives, are used to define structural elements for which the stress response is intermediate between
that of a spring and that of a dashpot, i.e. the responses corresponding to a zero or a first order derivative of the strain,
respectively.

There are different possible definitions for the fractional derivatives of a function, in this paper we will consider the
Riemann–Liouville definition with lower terminal as �1, given by the following expression:
Daf ðtÞ ¼ 1
Cðn� aÞ

Z t

�1

f ðnÞðsÞ
ðt � sÞaþ1�n ds n� 1 < a < n: ð1Þ
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This derivative is recognized as a proper definition for steady-state processes such as in modeling the response of viscoelastic
materials submitted to a given periodic load [15, p. 80]. This definition satisfies properties such as linearity and composition
of derivatives, and the following useful property:
Daeixt ¼ ðixÞaeixt 8t 2 R 8a 2 R: ð2Þ
In the expression above, the value ia ¼ cos a p
2

� �
þ i sin a p

2

� �
, which is also the value computed by the numerical implemen-

tations using the software GNU-Octave [28].

2.2. Applying the DFT

Given yðtÞ, a periodic continuous function for the magnitude y, let us consider that an acquisition is performed in N times
starting at t ¼ 0. The discrete signal is given by
yn ¼ yðT � nÞ n ¼ 0; . . . ;N � 1; ð3Þ
where T is the time between samples. If f s ¼ 1=T is the sampling frequency (the number of samples per time unit) then, we

can write yn ¼ y n
f s

� �
. Let us define the Discrete Fourier Transform DFT: CN ! CN , as a vectorial function Y ¼ DFTðyÞ, where

the k-th entry of Y is given by
Yk ¼
XN�1

n¼0

yn � e
�ixk

n
f s k ¼ 0; . . . ;N � 1; ð4Þ
where xk ¼ 2pk f s
N is the k-th frequency. The Inverse DFT is the inverse function of the DFT transform, i.e. y ¼ IDFTðYÞ, and the

n-th entry of y is given by
yn ¼
1
N

XN�1

k¼0

Yk � eixk
n
f s n ¼ 0; . . . ;N � 1: ð5Þ
Let us assume that the continuous function yðtÞ can be decomposed as a sum of exponential functions
yðtÞ ¼ 1
N

XN�1

k¼0

Yk eixkt xk ¼ 2pf s
k
N
: ð6Þ
If we consider the times t ¼ n=f s, then the values Yk can be obtained by using the DFT. Using the property given by Eq. 2 we
obtain
DayðtÞ ¼ 1
N

XN�1

k¼0

ðixkÞaYk eixkt : ð7Þ
Once again, considering the times t ¼ n=f s, we obtain the expression of the DFT of a fractional derivative for the k-th fre-
quency as:
DFTðDayðtÞÞ
� �

k ¼ ðixkÞaYk: ð8Þ
In a similar way, we can see that a constant signal yðtÞ ¼ c has the k-th component of the DFT given by
DFTðcÞð Þk ¼ cNdk0; ð9Þ
where dij is the Kronecker delta.

2.3. Viscoelastic models

In this section we describe two well-known viscoelastic models and a fractional variation of one of them. These models
are described in [29].

Standard Linear Solid. In the Standard Linear Solid (SLS) the material model consists of an arrangement of two springs and
one dashpot, as can be seen in Fig. 1(a). The positive material parameters E0 and E1 correspond to the stiffness of the springs
and the positive value g1 is the viscosity of the dashpot. This model provides the following constitutive equation:
rþ g1

E1
_r ¼ E0ðe� e0Þ þ

ðE1 þ E0Þ
E1

g1 _e; ð10Þ
where r is the stress in the material, e is the strain, and e0 is the strain corresponding to a static stress-free configuration. By
defining the following two positive material parameters:
sr ¼
g1

E1
; se ¼

E1 þ E0

E1 E0
g1; ð11Þ



Fig. 1. Left – Standard Linear Solid model. Right – Fractional Standard Linear Solid model.
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where sr and se are called relaxation time and creep time, respectively, which have dimension of time, the constitutive equa-
tion can be rewritten as:
rþ sr _r ¼ E0 ðe� e0Þ þ se _eð Þ: ð12Þ
Fractional Standard Linear Solid. In a fractional element, called spring-pot, the stress is proportional to the fractional
derivative of the deformation:
r ¼ E1sa
rDae; ð13Þ
where a is the fractional parameter. In the literature this parameter is considered a real number in the domain ½0;1�.
However, in Appendix B we show that it is thermodynamically admissible to allow a to be in the domain ½0;2�. This modified
spring-pot is what we call the high-order spring-pot (HOSP).

If we replace the dashpot by a spring-pot in the SLS model, see Fig. 1(b), we obtain the Fractional Standard Linear Solid
(FSLS), which has the following constitutive equation:
rþ sa
rDar ¼ E0 ðe� e0Þ þ

ðE1 þ E0Þ
E0

sa
r Dae

� �
: ð14Þ
In a more compact form the constitutive equation can be written as
rþ s0rDar ¼ E0 ðe� e0Þ þ s0e Dae
� �

; ð15Þ
where
s0r ¼
g1

E1

� �a

; s0e ¼
E1 þ E0

E0
s0r: ð16Þ
It is important to note that the parameters s0r and s0e have dimension of [timea]. It is easy to see that this model represents
the SLS model when a ¼ 1 is considered.

Double Maxwell-arm Wiechert. The Double Maxwell-arm Wiechert (DMW) model corresponds to an arrangement of three
springs and two dashpots, see Fig. 2. The constitutive equation is given by:
rþ v1 _rþ v2 €r ¼ E0ððe� e0Þ þ m1 _eþ m2€eÞ; ð17Þ
where
v1 ¼ sr1 þ sr2; v2 ¼ sr1sr2; ð18Þ
E0
E1

η1

E2

η2

Fig. 2. Viscoelastic Double Maxwell-arm Wiechert model.
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m1 ¼ sr1 þ sr2 þ t1 þ t2; m2 ¼ sr1 sr2 þ t1sr2 þ t2sr1 ð19Þ
and
sr1 ¼
g1

E1
; sr2 ¼

g2

E2
; t1 ¼

g1

E0
; t2 ¼

g2

E0
: ð20Þ
In [6] this model is presented as one of the complex viscoelastic models with the capability of fitting experimental biologic
data with higher accuracy than the SLS model.

3. Characterization method

Let us consider the FSLS constitutive model given by five material parameters, which can be separated in one fractional
parameter a and other four mechanical parameters represented by the vector x. Using this notation the constitutive equation
is,
rþ x4Dar ¼ �x1 þ x2eþ x3Dae; ð21Þ

where x1 is positive for a positive strain e0. Let us consider that stresses and strains are acquired in N times. Applying the DFT
to both terms and using the properties given by Eqs. (8) and (9) we obtain the following identity:
XN�1

n¼0

ð1þ x4ðixnÞaÞQ n þ x1Ndn0 � x2 þ x3ðixnÞa
� �

Un
� �

eixnt ¼ 0; ð22Þ
where Q and U represent the DFT vectors of the signals acquired for r and e, respectively, and xn is the above-mentioned n-
frequency. Since this identity is valid for all times and any stress and strain signals, we obtain the following system of
equations
ðIþ x4KaÞQ þ x1D� ðx2Iþ x3KaÞU ¼ 0; ð23Þ
where Ka is a diagonal matrix with coefficients ðKaÞnn ¼ ðixn�1Þa, and D is a vector with Di ¼ di1N. Let us consider that the
strains and stresses are measured and represented by the signals ~e and ~r respectively, and their respective DFT coefficient
vectors represented by ~U and ~Q . We denote by e and r the strains and stresses solution to (21), i.e. the signals given by the
model for certain mechanical parameters ðx;aÞ.

In a similar way as it is done in [9], we assume that either the stress or the strain given by the model is equal to the mea-
sured signal. For the numerical results presented in this paper we assume that the measured stress, and therefore its DFT
vector, has no error, thus ~Q ¼ Q . We can obtain the strain DFT vector given by the model from Eq. (23):
Unðx;aÞ ¼
ð1þ x4ðixnÞaÞeQ n þ x1Ndn0

x2 þ x3ðixnÞa
; n ¼ 0; . . . ;N � 1: ð24Þ
Then, the problem of characterization is to determine the best parameters to fit the experimental strain with the one given
by the model. This characterization problem can be written as
min
x;a

f ðx;aÞ

subject to
xi P 0 i ¼ 2; . . . ;4
x 2 R4 a 2 Ia

8>>>><>>>>: where f ðx;aÞ ¼ kUðx;aÞ �
~Uk2

k~Uk2 ; ð25Þ
where f is the fitness, given by the relative error of the DFT coefficients of the strain of the model, and Ia is a given real inter-
val. Note that there is no constraint in the sign of x1, i.e. the optimal stress-free strain can be negative or positive. This inverse
problem is solved using an iterative numerical method which is described below.

Since the fractional parameter varies in a real interval, problem (25) is solved for all fractional parameters in a given dis-
crete set of values Sa ¼ as þ iDa j i ¼ 1; . . . ;Naf g. The optimization problem is solved for each value a in the set. In order to
improve the speed of the process, it is convenient to provide an appropriate initial point. If we replace in (23) Q and U

by ~Q and ~U, respectively, we obtain:
ðIþ x4KaÞ ~Q þ x1D� ðx2Iþ x3KaÞ~U ¼ 0: ð26Þ
This equation can be used to obtain a reasonable initial point by solving the linear least squares problem minx2R4 Ax� bk k2

where
A ¼ ½D � ~U �Ka
~U Ka

~Q �; b ¼ ~Q : ð27Þ

The parameters x2; x3 and x4 are nonnegative, so that a nonnegative linear squares solver must be used to solve the problem,
such as the GNU Octave function lsqnonneg. The use of this initial point has shown a considerable improvement in the per-
formance of the optimization algorithm for problem (25).
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After solving problem (25) for each value a 2 Sa we define the optimal fractional parameter a ¼ a� as the one with the
lower fitness f ðx�;a�Þ where x� denotes the solution of (25) for a�:
x� ¼ arg min
x
ðf ðx;a�ÞÞ; where a� ¼ arg min

a
ðarg min

x
ðf ðx;aÞÞÞ: ð28Þ
Frequencies of the DFT. Although the DFT provides a vector of coefficients with as many entries as signal measurements, a
lower number of coefficients must be used. Considering the criterion applied in [23] we choose from the vector of coeffi-
cients the entries associated with the fifteen first harmonics of the fundamental frequency of the signal. This reduced DFT
vector is actually used to evaluate the fitness of problem (25), in the characterization method implemented. The fundamen-
tal frequency is estimated through an analysis of the power spectrum of the signal and its accuracy is given by the sampling
frequency f s and the length of the acquired data N.
4. Results

In this section we present results obtained using the proposed characterization method for three examples with artifi-
cially generated data and one with experimental data. The solution to (25) is obtained by using the sqp solver from the
optim package of the GNU Octave software [28] and the initial point is obtained using the Octave function lsqnonneg.
For each example the characterization method is applied using the FSLS model considering the traditional spring-pot and
the HOSP element.

Artificial data. In Examples 1 and 2 artificial ~r and ~e signals are generated using known mechanical and fractional param-
eters. In Example 3 pressure and diameter artificial data are generated considering a thin-walled vessel with variable inter-
nal pressure including the inertial terms in the governing equations of the problem.

Experimental data. In Example 4, stress and strain data are obtained from pressure and diameter experimental data.
Error measure. A relative error is defined using the L-2 norm in order to measure the misfit after characterization. The

error measures the misfit between the strain given by the model e and the solution strain ~e. The expression of the error
is given by
Error ¼
ke� ~ekL2

k~ekL2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
0 jeðtÞ � ~eðtÞj2 dt

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T

0 j~eðtÞj
2 dt

q : ð29Þ
All numerical results where obtained using an Intel i7 processor running GNU Octave version 3.8.0. The execution times
where for all cases lower than a few minutes.

4.1. Example 1 – Artificial FSLS data

In this example the characterization method is applied to artificially generated data. The stress–strain data is generated
using the FSLS model with known mechanical parameters, and noise is added in order to obtain results about the stability of
the method. The goal of this example is to verify that the implementation of the characterization method effectively obtains
the mechanical parameters used to generate the data even in the presence of some level of noise.

Strain values are generated by using the following formula
~eðtÞ ¼ e0c þ
X2

k¼1

ekc cosðkktÞ þ eks sinðkktÞ; ð30Þ
where the frequencies are kk ¼ 2p� 1:8� k, and the amplitudes are e0c ¼ 0:15; e1c ¼ 0:075; e1s ¼ 0:025; e2c ¼ 0:3e1c , and
e2s ¼ 0:3e1s. The values of ~r are calculated using the FSLS model with the mechanical parameters
E ¼ 1 kPa;se ¼ 0:1sa; sr ¼ 0:01sa, and a ¼ 0:64. We assume a stress-free strain e0 ¼ 0. The data with noise ê and r̂ are
obtained in the same manner as in [21] through the following expressions:
êðtÞ ¼ ~eðtÞ þ vðtÞn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð~eÞ

q
; r̂ðtÞ ¼ ~rðtÞ þwðtÞn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð~rÞ

q
; ð31Þ
where v and w are randomly generated, corresponding to a standard distribution of zero mean and unit deviation, and n is
the noise level. The first data set has zero noise level, while the data sets 2 and 3 have noise level 1% and 2%, respectively.

The discrete set Sa is defined in the interval Ia ¼ ½0:2;1�with a step 0.005. Note that for a ¼ 0, the material model is purely
elastic, and its actual stiffness is given by three redundant parameters which cannot be determined univocally. Small values
of a will then render ill-conditioned problems, that is why a positive lower bound is used in the interval Ia.

Fig. 3 shows the optimum fitness obtained for each value of a for the three data sets. The numerical results are presented
in Table 1. The error of the fractional parameter in the data without noise is given by the step used in the definition of Sa, in
this case it is 0.005 which represents a precision below 0.4%. It is important to remark also that the strain e0 obtained by the
method is negligible when compared against the largest strain values of the signal.



Fig. 3. Example 1 optimum fitness results.

Table 1
Results of Example 1.

Parameter Solution n ¼ 0% n ¼ 1% n ¼ 2%

e0 ð10�4Þ 0 0.1613 ½�20:71;7:67� ½�17:83;1:6�
E ðkPaÞ 1 1.00003 ½0:986;1:00493� ½0:988;1:0008�
s0e ðsaÞ 0.1 0.0998 ½0:0985;0:1047� ½0:0992;0:1049�
s0r ðsaÞ 0.01 0.00989 ½0:0067;0:0114� ½0:005;0:013�
a 0.64 0.64 ½0:615;0:65� ½0:62;0:65�
Fitness ð10�9Þ 1.208 ½65:28;149:5� ½208:69;433:51�

Error ð10�4Þ 2.8038 ½37:87;38:91� ½74:79;76:07�
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Since the noise introduced in the data sets 2 and 3 is randomly generated, their corresponding results are expressed in
Table 1 in terms of the range of values obtained in five runs. For all parameters, except for sr, the relative error in the param-
eter is of the order of the noise level introduced in the data.

Fig. 4 depicts the hysteresis loops given by the model using the optimal mechanical parameters (crosses) and the hystere-
sis loops of the solution data (circles) for the data sets 1 and 3.

The results obtained let us conclude that the method is appropriate for the characterization of mechanical and fractional
parameters of a FSLS constitutive model. Noise was added to the data and the results show that the method is able to char-
acterize the mechanical parameters with an error of the order of the noise level introduced, except for the sr parameter. The
method is then stable and able for its use with experimental data. Respect to the results for the parameter sr, we can appre-
ciate sensitivity respect to the noise, being this fact already reported in the literature [9]. However, we are specially inter-
ested in the ability of the method to determine the fractional parameter, which, as we will show below, is the crucial one in
complex behavior modeling.
Fig. 4. Example 1: Left – hysteresis obtained for n ¼ 0. Right – hysteresis obtained for n ¼ 2%.
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4.2. Example 2 – Artificial DMW data

In this example the method is applied to stress and strain data artificially generated using a DMW model, and character-
ization is performed using the presented FSLS model. The aim of this example is to test the ability of the FSLS model to rep-
resent the behavior of viscoelastic models composed by several springs and dashpots.

As a first approach to the modeling of living tissues, in this example the values of the mechanical parameters considered
are the average values obtained in recent literature for modeling porcine tissue behavior with a DMW model [6]. The first
data set will be generated using the mechanical parameters obtained for porcine spleen E0 ¼ 1:22 kPa, E1 ¼ 1:03 kPa,
g1 ¼ 2:44 kPa s, E2 ¼ 0:66 kPa and g2 ¼ 38:22 kPa s, and the second data set is obtained using the porcine liver mechanical
parameters E0 ¼ 3:53 kPa, E1 ¼ 7:74 kPa, g1 ¼ 21:81 kPa s, E2 ¼ 5:62 kPa and g2 ¼ 410:81 kPa s. In both cases a stress-free
strain e0 ¼ 0 is considered.

Although the data sets are generated using the same procedure as in Example 1, in this case the amplitudes are
e0c ¼ 0:15� 10�3; e1c ¼ 0:075� 10�3; e1s ¼ 0:025� 10�3; e2c ¼ 0:3e1c; e2s ¼ 0:3e1s; e3c ¼ 0:1e1c and e3s ¼ 0:1e1s. The frequen-
cies are also given by kk ¼ 2p� 1:8� 10�3 � k with k ¼ 1;2;3. These values are chosen with the purpose of obtaining stres-
ses in the order of magnitude of those obtained in [6]. In this example the data sets are not polluted with noise.

In order to compare the results obtained for the FSLS model using the traditional spring-pot and the HOSP element, we
perform a characterization considering the traditional spring-pot and the HOSP. The results obtained are presented in
Table 2. We can see for both data sets, that the use of the HOSP element reduced the error (29) by more than 50%. We remark
that in this example there may not be any relation of the mechanical parameters obtained with the solution DMW values.

As we have seen in Example 1, when the parameter a is small numerical problems arise. We have observed the same for
the large values, so that in this case the search interval for a was defined as ½0:3;1:6�, and the step equal to 0.0025. In Fig. 5
we can see the optimal fitness for both data sets, where the red circles represent the fitness obtained for the data using the
porcine liver parameters, and the blue crosses the porcine spleen parameters.

We can appreciate that the use of the HOSP element, provides better accuracy, i.e. a lower value of the fitness function for
both DMW data sets. Since in [6] it is concluded that DMW models are appropriate for modeling the behavior of biological
tissues, we conclude that the FSLS models are also appropriate, being the HOSP element a better choice than the traditional
spring-pot.
Table 2
Results Example 2.

Parameter Data 1 (spleen) Data 2 (liver)

Spring-pot HOSP Spring-pot HOSP

e0 ð10�6Þ 2.18 6.66 9.97 24.48

E ðkPaÞ 1.24 1.28 3.78 4.22
s0e ðsaÞ 90.73 121.53 183.71 229.15
s0r ðsaÞ 57.25 80.58 70.99 101.63
a 1 1.0775 1 1.0865

Fitness ð10�7Þ 14.96 2.48 44.78 8.61

Error ð10�4Þ 17.061 7.62 29.91 14.64

Fig. 5. Example 2 optimal fitness results. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
article.)
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4.3. Example 3 – Artificial dynamic SLS data

In this example we investigate the effect o the usual quasi-static approximation in the value of the fractional parameter a.
In particular, we would like to determine whether an observed high value of a should always be due to a complex consti-
tutive behavior, that we aim to approximate by using a FSLS with a HOSP, or might be artificially caused by the quasi-static
approximation. To this aim, we first generate artificial data consistent with the dynamic governing equations and then
characterize with the proposed FSLS model which ignores inertial terms. The governing equations correspond to a thin-
walled vessel composed of a SLS material and submitted to a variable internal pressure p.

The solution strain is generated using the same procedure of the Example 2. The amplitudes and frequencies are those of
the Example 2 multiplied by a factor 103 to have magnitudes of the order of the experimental data used in the next example.
The stress data is generated from these deformations using the SLS model with parameters E ¼ 580 kPa;se ¼
0:06 s;sr ¼ 0:01 s, and e0 ¼ 0. Then, the pressure and diameter data are obtained by using Eqs. (A.4) and (A.5) of
Appendix A. In this way, we generate pressure and diameter values, which are the two measurements that are usually
obtained in in vivo or in vitro experimental procedures. In this example we consider a mass density q ¼ b� 1000 kg=m3 with
b equal to 1;5000 and 10,000, to generate three different data sets. For the vessel geometry we consider a reference radius
r0 ¼ 9:3 mm, and thickness h ¼ 0:1r0.

For the characterization process, the pressure-diameter data is converted to stress–strain data neglecting the inertial
terms of the governing equations, i.e. by using the simplified expressions
Table 3
Results

Para

e0 ð1
E ðkP
s0e ðsa

s0r ðs
a
Fitne

Erro
rh ¼
pr
h
; eh ¼

r � r0

r0
; ð32Þ
obtained from (A.4), and (A.5). The optimal fitness functions obtained for the three different values of b are shown in Fig. 6.
The parameters obtained for the characterization using each data set are presented in Table 3.

As it is done in Example 1, we compare the results obtained by using the traditional spring-pot and the HOSP element.
Fig. 7 shows the hysteresis loops obtained for a ¼ 1 (solution for the spring-pot), and the hysteresis for a ¼ 1:315 (solution
for the HOSP) in the case b ¼ 10;000.

We remark that a high-order value for a were obtained only for values of density several orders of magnitude higher than
the reference value. We conclude that the inertial terms can be neglected when the mechanical parameters are in the order
of magnitude of this example. In particular we can assure that the quasi-static approximation cannot be the reason explain-
ing the high-order values for a obtained in actual characterization of arterial mechanical parameters.
of Example 3.

meter Solution b ¼ 1 b ¼ 5000 b ¼ 10;000

0�4Þ 0 0.0371 46.98 161.17

aÞ 580 579.97 597.01 646.11
Þ 0.06 0.0599 0.0372 0.0224

aÞ 0.01 0.00996 0 0
1 1 1.1 1.315

ss ð10�9Þ 3.042 68,459 329,440

r ð10�4Þ 4.814 113.11 248.07

Fig. 6. Example 3 Fitness.



Fig. 7. Example 3: Solutions for b ¼ 10;000. Left – hysteresis obtained using the spring-pot. Right – hysteresis obtained using the HOSP.
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Other complex physical phenomena that are not taken into account in the characterization model, such as fluid–structure
interaction, could also affect the value of a. These effects should be investigated in future works.
4.4. Example 4 – Experimental data

In this example the characterization method is applied to arterial wall experimental data. The aim of this example is to
show the ability of the proposed FSLS model (with the HOSP element) to fit the data with higher accuracy than the tradi-
tional spring-pot and obtain conclusions about the constitutive behavior of the arterial wall.

The experimental data used in this example is part of the data obtained in [9], and consists of measurements of pressure
and diameter of a healthy Ascending Aorta of a Merino sheep. The data was acquired with a sampling frequency of 200 Hz.
The density measured for the arterial wall is q ¼ 1:06 g/cm3.

As well as in Example 3, we first generate circumferential stress and strain data assuming a plane strain state, and
neglecting the radial component of the stress tensor [2,30]. The expressions of Eq. (32) are used with the thickness-radius
ratio approximated by h=r � 0:1 and with a reference radius r0 ¼ 9:36 mm, which is the mean radius measured in conditions
of zero internal pressure, see [9].
Fig. 8. Example 4: Left – hysteresis obtained using the spring-pot. Right – hysteresis obtained using the HOSP.

Table 4
Results Example 4.

Parameter Spring-pot HOSP

e0 ð10�2Þ �2.32 2.98

E ðkPaÞ 773.3 1037.9
s0e ðsaÞ 0.033 0.0076
s0r ðsaÞ 0.0070 0.0028
a 1 1.644

Fitness ð10�4Þ 9.33 1.06

Error ð10�2Þ 4.545 2.31



Fig. 9. Example 4 – Fitness results using the HOSP.
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The characterization is done using the spring-pot and the HOSP. The results are presented in Table 4. We can see that, as
in previous examples, the use of the HOSP element reduces in more than 50% the error and one order of magnitude in the
fitness function. Note that the values obtained for the stress-free strain are negligible, therefore we can say that the stress-
free radius ~r ¼ ð1þ e0Þr0 obtained by the characterization method and the measured value r0 coincide up to a small error
(the stress-free radius ~r should be understood here as the radius of a static configuration of zero internal pressure, since
it is known that residual stresses are present in the arteries [11] and should be considered in thick-walled models).

Fig. 8-left shows the hysteresis loop obtained with the spring-pot, compared with that of the experimental data, and
Fig. 8-right shows the same comparison for the HOSP. The improvement in the FSLS model obtained by using the HOSP is
clearly noticeable in these figures.

The characterization was performed for all values of a in the interval ½0:3;1:9� whit a step Da ¼ 0:001, and the fitness
graph obtained is presented in Fig. 9.

5. Discussion

In this paper a numerical method for characterization of mechanical parameters of fractional viscoelastic models was
described and validated. The validation was performed through the resolution of three examples with known solution.
The method was successfully applied to the modeling of experimental data of arterial wall mechanics.

As it was noted, the results obtained for the Example 1 let us conclude that the method is adequate for characterization of
material parameters of a FSLS model, in particular, the fractional parameter was obtained accurately even when noisy data
was used.

The results of Example 2 show that the use of a HOSP element enhances the ability of a FSLS constitutive model to rep-
resent a complex behavior corresponding to a DMW model. The mechanical parameters used for the data generation corre-
spond to porcine spleen and porcine liver, therefore we conclude that the proposed model can be used for properly modeling
the behavior of these biological tissues. Future works should investigate the ability of the FSLS model with a HOSP to rep-
resent accurately the behavior of other tissues that are usually modeled with the DMW and Triple Maxwell-arm Wiechert
models.

In Example 3, the characterization was performed using data obtained by solving the dynamic governing equations of a
thin-walled vessel under internal pressure. The mechanical parameters and density used are in the order of those obtained in
Example 4 for the arterial wall tissue. It was shown that for reasonable values of the mass density the inertial terms can be
neglected, i.e. the quasi-static approximation does not introduce a noticeable error in the value of the fractional parameter a
obtained by the characterization method. The quasi-static approximation can be used in characterization using experimental
data as it was done in Example 4.

In Example 4 we obtained an important result about the use of the HOSP in FVMs for arterial wall modeling instead of the
traditional spring-pot. The results show clearly that the HOSP improves the fit of the experimental data. In the literature,
histological interpretations have been given to the fractional parameter value bounded by one. Further studies should inves-
tigate possible histological interpretations of a fractional parameter greater than one. However, even if no interpretation is
provided yet, a better modeling is obtained, which could lead to improvements in cardiovascular simulations.
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Appendix A. Dynamic Standard Linear Solid equations

In this section we present the governing equations of a Standard Linear Solid material considering dynamic contribution.
This model is given by a SLS constitutive model, and the contribution of the acceleration in the equations of motion. Given a
solid with density q, the mechanical balance equations are given by
r � T þ b ¼ q€u; ðA:1Þ
where b is the load density, T is the Cauchy stress tensor, and u the displacement vector.
Let us consider now a thin-walled vessel with internal pressure p at a plane strain deformation state with negligible axial

and radial stresses. The internal pressure divided by the wall thickness is considered as a volume load, so that the balance
equation is non-trivial only in the radial component. The following expression for the stress rh is then obtained:
�rh

r
þ p

h
¼ q €ur : ðA:2Þ
Since eh ¼ ur=r0, where r0 is the reference radius, we obtain
rh ¼
pr
h
� q r0 r €eh: ðA:3Þ
We are now able to obtain an expression for the internal pressure in terms of the stress, the strain, the density and the thick-
ness-radius ratio as:
p ¼ h
rh

r
þ qhr0 €eh: ðA:4Þ
The radius can be obtained by using r ¼ r0 þ ur and eh ¼ ur=r0 as:
r ¼ r0ð1þ ehÞ: ðA:5Þ
Appendix B. High-order spring-pot element justification

In this section we show that it is physically admissible to consider a HOSP element as was described. Let us consider a
spring-pot element with a fractional response of order a, we will show that the constraint a 6 2 can be used instead of
a 6 1, without violating thermodynamic constraints. This result allows the use of this element in constitutive models. We
will obtain a relation for the parameters in a similar way as it is done in the literature [17,18].

Let us consider that the strain and stress functions can be decomposed in Fourier series,
eðtÞ ¼
X1
i¼0

ei ej ki t rðtÞ ¼
X1
i¼0

ri ej ki t: ðB:1Þ
where j is the imaginary unit j2 ¼ �1. The complex coefficients ei and ri must be such that e and r be real valued function.
Since the constitutive equation of the HOSP is satisfied, we obtain:
rðtÞ ¼ E1 s0r DaeðtÞ ) ri ¼ E1 s0r ðjkiÞaei: ðB:2Þ
In the same manner we obtain the coefficients of the series of the first derivative of the strain:
_eðtÞ ¼
X1
i¼0

jkiei ej ki t ) _ei ¼ jkiei: ðB:3Þ
In order to validate a constitutive model, we have to check that the thermodynamic laws are satisfied. In particular we
will analyze closed processes, where the dissipation must be nonnegative [31,32]. Let us consider a thermodynamic closed
process where thermal influences are negligible and the solid conductivity is high enough to produce a zero gradient of tem-
perature. The rate of internal work is equal to the rate of free energy plus the dissipation
_w ¼ _wþ d: ðB:4Þ
Since the free energy w is a state variable, the integral of _w in any closed process with period T is zero, thus, we obtain the
following equality
Z T

0

_wdt ¼
Z T

0
ddt P 0: ðB:5Þ
The first integral can be calculated by the following expression
Z T

0

_wdt ¼
Z T

0
hr; _eidt ðB:6Þ
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and substituting the expressions in Eqs. (B.2) and (B.3) we obtain:
Z T

0

_wdt ¼
Z T

0

X1
i¼0

E1 s0r ðjkiÞaei ej ki t

 ! X1
i¼0

jkiei ej ki t

 !
dt: ðB:7Þ
The exponential functions form an orthogonal basis, thus, the integral of any product between different frequencies expo-
nentials will be zero. Moreover, since the positive dissipation inequality is required for any process, all the terms in the
sum must be positive thus we obtain the following equivalent inequalities:
Re E1 s0r ka
i ja ei ð�jki �eiÞ

� �
P 0 () Im jeij2 E1 s0r ka

i ja ki

� �
P 0; ðB:8Þ
substituting the expression for ja in the second inequality, we obtain a constraint for the parameter a
E1s0r sin a
p
2

� �
P 0: ðB:9Þ
Since E1 and sr are positive constants, we conclude that a must belong to the interval ½0;2� in order to obtain a thermody-
namically consistent high-order element. Repeating the procedure with the FSLS equation we obtain the relation
Eðs0e � s0rÞ sin a
p
2

� �
P 0; ðB:10Þ
where, from the definitions of s0e and s0r in Eq. (16), we can see s0e � s0r P 0. Finally, we obtain the same feasible interval for
the parameter a.

In addition, we notice that the positive internal work rate constraint can be also presented as a simple geometrical
condition of the hysteresis graph. Let us consider the plane curve C : ðeðtÞ;rðtÞÞwhere r and e are real valued. Since the coor-
dinates functions are periodic the curve define a two-dimensional area X with normal vector n ¼ ð0;0;�1Þ. Let us consider

the vector field ~X ¼ ðr;0;0Þ and the expression of its circulation in C
Z
C

~X �~t ds ¼
Z
C

r _edt: ðB:11Þ
This circulation can also be calculated applying the Stokes theorem
Z
C

~X �~t ds ¼
Z

X
0;0;� @r

@r

� �
� ð0; 0;�1ÞdA ¼

Z
X

1dA: ðB:12Þ
Then we obtain the following equality:
Z T

0
r _edt ¼ AreaðXÞ: ðB:13Þ
Since the internal work rate is positive, the area must be positive. In this way the thermodynamic condition is converted into
a clockwise orientation of the curve C in the space ðe;rÞ condition.

In order to verify numerically the results we generate graphs similar to those shown in [21] for values of a higher than
one. The constitutive model used for this data is the Fractional Kelvin–Voigt model, defined by a spring and a spring-pot in
parallel. The mechanical parameters used are E ¼ 1000 kPa, se ¼ 0:1 sa and, frequency k ¼ 10 rad/s. Since the model is
Fig. B.10. Fractional Kelvin–Voigt hysteresis.
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Kelvin–Voigt, we consider sr ¼ 0. Fig. B.10 shows the ellipses for various values of a. When a tends to the value 0 the ellipse
collapses into a line with slope Eð1þ seÞ, while for a! 2 the ellipse collapses into a line with slope Eð1� k2seÞ.

It is important to remark that within the interval ½0;2� all the curves are clockwise oriented. For a higher than 2 the curve
C becomes counterclockwise oriented, thus the ellipse area becomes negative, which is not thermodynamically admissible.

The mathematical results presented demonstrate the high-order spring-pot element can be used to model real materials.
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