Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41829
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Fernández, Alicia | es |
dc.contributor.author | Lecumberry, Federico | es |
dc.contributor.author | Tailanian, Matias | es |
dc.contributor.author | Gnemmi, Giovanni | es |
dc.contributor.author | Meikle, Ana | es |
dc.contributor.author | Pereira, Isabel | es |
dc.contributor.author | Randall, Gregory | es |
dc.date.accessioned | 2023-12-11T19:57:57Z | - |
dc.date.available | 2023-12-11T19:57:57Z | - |
dc.date.issued | 2014 | es |
dc.date.submitted | 20231211 | es |
dc.identifier.citation | Tailanián, M, Lecumberry, F, Fernández, A, Gnemmi, G, Meikle, A, Pereira, I, Randall, G. "Dairy Cattle Sub-clinical Uterine Disease Diagnosis Using Pattern Recognition and Image Processing Techniques". Bayro-Corrochano, E., Hancock, E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. Springer, Cham. https://doi.org/10.1007/978-3-319-12568-8_84 | es |
dc.identifier.isbn | 978-3-319-12568-8 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/41829 | - |
dc.description.abstract | This work presents a framework for diagnosing sub-clinical endometritis, a common uterine disease in dairy cattle, based in the analysis of ultrasound images of the uterine horn. The main contribution consists in the feature extraction proposal, based on the characteristics that the expert takes into account for diagnosing, such as statistics measures, image textures, shape, custom thickness measures and histogram, among others. Given the segmentation of the different regions of the uterine horn, a fully automatic supervised classification is performed, using a model based on C-SVM. Two different datasets of ultrasound images were used, acquired and tagged by an expert. The proposed framework shows promising results, allowing to consider the development of a complete automatic procedure to measure morphological features of the uterine horn that may contribute in the diagnosis of the pathology. | es |
dc.language | en | es |
dc.publisher | Springer | es |
dc.relation.ispartof | Bayro-Corrochano E., Hancock E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | Dairy cattle sub-clinical uterine disease diagnosis using pattern recognition and image processing techniques | es |
dc.type | Capítulo de libro | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
dc.identifier.doi | https://doi.org/10.1007/978-3-319-12568-8_84 | es |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
TLFGMPR14.pdf | 471,72 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons