Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41779
Cómo citar
Título: | Boruvka meets nearest neighbors |
Autor: | Tepper, Mariano Musé, Pablo Almansa, Andrés Mejail, Marta |
Tipo: | Ponencia |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2013 |
Resumen: | Computing the minimum spanning tree (MST) is a common task in the pattern recognition and the computer vision fields. However, little work has been done on efficient general methods for solving the problem on large datasets where graphs are complete and edge weights are given implicitly by a distance between vertex attributes. In this work we propose a generic algorithm that extends the classical Boruvka’s algorithm by using nearest neighbors search structures to significantly reduce time and memory consumption. The algorithm can also compute in a straightforward way approximate MSTs thus further improving speed. Experiments show that the proposed method outperforms classical algorithms on large low-dimensional datasets by several orders of magnitude. |
Descripción: | Trabajo presentado a CIARP 2013: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. |
Citación: | Tepper, M., Musé, P., Almansa, A., Mejail, M. "Boruvka meets nearest neighbors". Publicado en: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41827-3_70 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
TMAM13.pdf | 439,41 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons