
Boruvka Meets Nearest Neighbors

Mariano Tepper1,��, Pablo Musé2, Andrés Almansa3, and Marta Mejail4

1 Department of Electrical and Computer Engineering, Duke University
mariano.tepper@duke.edu

2 Instituto de Ingenieŕıa Eléctrica, Facultad de Ingenieŕıa,
Universidad de la República

pmuse@fing.edu.uy
3 CNRS - LTCI UMR5141, Telecom ParisTech

andres.almansa@telecom-paristech.fr
4 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires
marta@dc.uba.ar

Abstract. Computing the minimum spanning tree (MST) is a common
task in the pattern recognition and the computer vision fields. However,
little work has been done on efficient general methods for solving the
problem on large datasets where graphs are complete and edge weights
are given implicitly by a distance between vertex attributes. In this work
we propose a generic algorithm that extends the classical Boruvka’s al-
gorithm by using nearest neighbors search structures to significantly re-
duce time and memory consumption. The algorithm can also compute in
a straightforward way approximate MSTs thus further improving speed.
Experiments show that the proposed method outperforms classical algo-
rithms on large low-dimensional datasets by several orders of magnitude.

1 Introduction

The computation of the minimum spanning tree (MST) is a classical problem
in computer science. For an undirected weighted graph, it can be simply stated
as finding a tree that covers all vertices, called a spanning tree, with minimum
total edge cost. It is taught in every course of algorithms and data structure as
an example where greedy strategies are successful and it is regarded as one of
the first historical foundations of operations research.

Maybe the two most widely known algorithms to compute the MST are Prim’s
and Kruskal’s [1]. There is a third classical algorithm by Boruvka [1] that mys-
teriously remained shadowed by the other two. This fact is emphasized by the

� Supported by FREEDOM (ANR07-JCJC-0048-01), CNES (R&T Echantillonnage
Irregulier DCT/SI/MO - 2010.001.4673), Callisto (ANR-09-CORD-003), ECOS Sud
U06E01, ARFITEC (07 MATRH), STIC Amsud (11STIC-01 - MMVPSCV), and
the Uruguayan ANII (PR-POS-2008-003).

�� Work partially done while M. Tepper was with the Departamento de Computación
at the Universidad de Buenos Aires.

fact that Boruvka’s algorithm is also known as Sollin’s algorithm, despite the
fact that Sollin re-discovered it independently years later.

The MST is particularly interesting for many data analysis tasks in computer
vision and pattern recognition. A clear example is clustering, where the classical
single-linkage hierarchical algorithm [2] can be proven equivalent to computing
the MST. In a seminal work, Zahn [3] studied the benefits of using the MST
for clustering. More recently, the MST received attention due to the growth
in the size of clustering datasets, e.g., [4,5]. The approximate MST (AMST),
suboptimal but faster, also received attention for the same reasons [6].

We now slightly change the definition of the problem to a form more suitable
for data analysis (e.g., clustering). Let M be a set and d : M × M → R

+ a
distance function. Then d and the pair (M,d) are said to be a metric on M and
a metric space, respectively. Given a data set X ⊆ M , the MST of X is defined
as the MST of the weighted undirected graph G = (V,E) where each vi ∈ V is
identified with a feature xi ∈ X , E = V × V (the graph is complete), and the
graph’s weighting function ω : E → R is defined as ω((vi, vj)) = d(xi, xj).

The problem is classically addressed by using metric spaces with exploitable
specific characteristics like the Euclidean space, e.g., the Euclidean MST is con-
tained in the Delaunay triangulation of X [7]. Recent work has aimed at building
an AMST [6] through a clever use of space-filling curves.

Nearest neighbors (NNs) search structures have been used to compute the
MST [8]. The approach proved successful; moreover, using such structures al-
lows in addition to compute the AMST in a natural and straightforward way.
A revision of this approach is needed, in the light of novel NNs techniques and
increasing computational power. More recently, Leibe et al. [9] used NNs tech-
niques for hierarchical clustering using the average-link criterion. Although they
improved the method’s performance, their algorithm is not suitable for extremely
large datasets.

Classical algorithms for computing the MST run in O(n2 logn), where n =
|X |. However, one must compute all n(n− 1)/2 distances and thus a double-sided
problem appears: (1) storing all n(n− 1)/2 results for n ≥ 105 is prohibitive; (2)
even if results are not stored, for n ≥ 105 the overall running-time is also pro-
hibitive. Keep in mind that, in modern pattern recognition applications, feature
sets of 105 or more points are becoming common [10]. In this work we address
the MST problem without computing all distances in E. We build on Boruvka’s
approach [1] by an appropriate use of NNs search techniques.

The rest of the paper is structured as follows. In Section 2 we propose a
general approach to compute the MST using NNs search structures. Section 3
shows empirical results of the proposed approach on a synthetic dataset. Finally,
some final remarks and future work are presented in Section 4.

2 A Nearest Neighbors Approach

First let us explain Boruvka’s algorithm: it creates a forest (i.e., a set of trees)
where each isolated edge is a tree and gradually merges these trees by adding

Algorithm 1: Computation of the MST T = (V,ET) of feature set X .

1 ET ← ∅;
2 while |ET | < |V | − 1 do
3 E′ ← ∅;
4 foreach connected component C of T do
5 (um, vm)← argmin

u∈C, v/∈C

d(u, v);

6 δm ← d(um, vm);
7 E′ ← E′ ∪ {(um, vm, δm)};
8 while E′ �= ∅ do
9 (um, vm, δm)← argmin

(u,v,δ)∈E′
δ;

10 E′ ← E′
� {(um, vm, δm)};

11 if ET ∪ {(um, vm, δm)} does not contain cycles then
12 ET ← ET ∪ {(um, vm, δm)}

the smallest edge whose endpoints lie on different trees (see Algorithm 1). We
propose to express the term in line 4 of Algorithm 1 in terms of finding NNs in
the set V � C:

um = argmin
u∈C

d(u,NNd(V � C, u)), (1)

vm = NNd(V � C, um), (2)

where NNd(A, b) returns the NN a ∈ A of b using metric d. We also modify the
function NNd(A, b) by adding an additional constraint function ρ : X → {0, 1}
on the returned element. We denote it by NNd,ρ(A, b). It returns the NN a ∈ A
of b using metric d such that ρ(a) = 1. By setting ρ(v) = (v /∈ C) we have

NNd(V � C, u) = NNd,ρ(V, u). (3)

This kind of problem is sometimes referred to as Foreign NNs in the literature.
We are sure that the desired node vm is among the k NNs of u where k =

|C|+ 1. Therefore in the worst case, using a naive approach, NNd,ρ amounts to
perform a k-NNs search and then a simple check among them by using ρ. Note
that k is a dynamic (growing) quantity and it is not possible to fix it in advance.
The problem is thus of a different nature than finding the MST in a constrained
degree graph. Of course, there is no need to compute that many NNs, since the
constraint can be directly incorporated in the NN technique.

Priority queues can be used to prune the number of NNs searches performed
during the algorithm [8]. We propose to use several priority queues, one for each
connected component in a partial (i.e., already computed) MST. The nodes ui

of a partial MST are stored, with their foreign NNs uj, in a priority queue where
the priority of a node is the inverse of d(xi, xj). The use of a priority queue
is indeed interesting in this context, as the next edges to add to the MST are

at the top of the priority queues. The top of the queues are removed and the
top-priority foreign NNs are added to the MST. After merging two connected
components, their priority queues are also merged.

Additionally, the priority queue must be updated, since disjoint connected
components are merged and some foreign NNs might not be foreigners anymore.
Note that it may not be necessary to update the entire priority queue. This
is because the current priority of each of these nodes (the priority before the
insertion in the MST) serves as an upper bound of its real priority (the priority
after the insertion in the MST). The real priority of a node needs only to be
computed when its current priority is on the top of the queue.

We omit the pseudocode of the resulting algorithm because of space con-
straints, see [11] for further details. Note that the space complexity is still O(n).
In the first iteration, there are n queues, each of length 1. In the second iteration
there are roughly n/2 queues, each of length 2, and so on.

2.1 Approximate MST

If we simply relax the search by finding approximate NNs we end up with an
AMST algorithm. Approximate NNs queries are much faster than exact ones,
specially in high-dimensional spaces.

Typically, ANNd(X, u, η) ensures that, if the true NN is at distance δ, the
approximate NN is at a distance lower than δ(1+ η). Note that AMSTs can also
be obtained by using a probability bound on the NN distance [12].

Lai et al. [6] have previously studied AMSTs. Their approximation is obtained
by using space-filling structures, i.e., Hilbert curves. Their work differs from ours
in two central points. First, our algorithm allows to combine MSTs and AMSTs
in a single framework, in which the only difference between them is a relaxation
parameter. Their work is restricted to AMSTs. Second, Hilbert curves are fractal
and the space-filling accuracy follows an exponential scale. It relies on a scale
parameter that has a non-intuitive meaning and which is difficult to choose. It
is not straightforward to set automatically a suitable scale for a given point set
configuration. The relaxation parameter in our method has a clear interpretation
and it is easy to monitor its effect.

3 Experimental Results

For the NN computations, choose the list-of-clusters (LOC) structure [13,14]. It
is reported to be very efficient and resistant to the intrinsic dimensionality of
the data set. It can also be implemented in primary and in secondary memory.
See [11] for further details on how to adapt the structure for our specific purposes.

As distance computations are the dominating speed factor, we measure perfor-
mance and complexity as a function of them. We sample points from a uniform
distribution in the unit hyper-cube. We tested with four different dimensional-
ities R

2, R5, R10 and R
20. We compared the following methods (see Table 1):

Bvka: the classical Boruvka’s algorithm, where all distances are precomputed

Table 1. The methods compared in this work. s stands for average number of distance
operations needed to complete a NNs search.

Method Solution
Number of distances Space Search
computed stored complexity speed

Bvka MST n(n− 1)/2 all O(n2) —
Bvka-O MST O(n2 log n) none O(1) linear
Bvka-LOC MST O(sn log n) none O(n) sub-linear
Bvka-PQ-LOC MST O(sn log n) n− 1 O(n) sub-linear
Bvka-A η AMST O(sn log n) n− 1 O(n) sub-linear

and stored in memory; Bvka-O: the proposed algorithm where an online linear
search is used to compute NNs; Bvka-LOC: the proposed algorithm where NNs
are computed online by using LOC; Bvka-PQ-LOC: the proposed algorithm
where NNs are computed online by using LOC and priority queues; Bvka-A
η: Bvka-PQ-LOC modified to compute the AMST by using approximate NNs.
Note that the reduced memory complexity of the algorithm guarantees that we
will be able to treat large datasets without memory issues.

Comparisons were made for relatively small feature sets (|X | ≤ 104) to be able
to compare with a classical MST implementation. A summary of our results is
shown in Figure 1. Our method exhibits a very strong performance improvement
in low dimensions (Fig. 1, top row). Bvka-LOC and Bvka-PQ-LOC in both cases
outperforms Bvka several orders of magnitude. We can also notice a strong per-
formance degradation of Bvka-LOC with the increase of dimensionality (Fig. 1,
bottom row). The only cause is the NNs search structure. It is a well known
fact that the performance of NNs search structures tends to become linear in
high-dimensions. In any case, our method is generic: any NN structure can be
used. Another structure may provide better results in high dimensions and we
plan to explore these issues in future work.

Table 2a summarizes the results from Figure 1 by analyzing the slope of the
different curves. The proposed approach lowers in practice the number of distance
computations needed to solve the problem. The quadratic profiles of Bvka and
Bvka-O are reduced to supralinear (e.g., n1.6 approximately) by Bvka-LOC and
Bvka-PQ-LOC. As stated, the latter shows a computational cost which is less
sensitive to an increase in dimensionality.

We provide a simple example of the incidence of using the AMST, shown in
Figure 2a. We use X uniformly distributed on the square [0, 1]2 and Euclidean
distance. Computing the MST required 9613 distance computations with our
algorithm, while taking 9155, 8705 and 7840 with η = 0.1, η = 0.2, η = 0.5 re-
spectively. There is an important improvement in performance while the number
of topology changes is small. Moreover, when carefully inspected, these changes
are reasonable. It is a well known fact that (even little) jitter noise in the dataset
greatly affects the topology of the MST [4]: computing the AMST can be seen as
perturbing the dataset with such a noise. Usually η is chosen to be quite small,
and its use has more meaning in large and high-dimensional datasets. In our toy
example, keeping η small does not introduce changes in the topology of the tree.
We exaggerated η to show actual topology changes.

Fig. 1. Comparison in the number of distance computations as |X| grows. From left
to right: top row, X ⊂ R

2 and X ⊂ R
5; bottom row, X ⊂ R

10 and X ⊂ R
20. The radii

in the list-of-clusters were chosen such that each bucket has
√|X|/2 internal elements.

Both scales are logarithmic.

(a)

(b)

Fig. 2. (a) Comparison of the MST (using Bvka) vs the AMST (using Bvka-A η)
for several levels of relaxation η. From left to right: MST, AMST (η = 0.1), AMST
(η = 0.2), AMST (η = 0.5). (b) Comparison in the number of distance computations
of the MST and the AMST algorithms for η = 0.1 and η = 0.2 with X ⊂ R

20.

Table 2. (a) Slopes of the different curves in Figure 1 in a log-log scale. In low dimen-
sions, Bvka-LOC is better than any classical algorithm while Bvka-PQ-LOC resists
better the dimensionality increase. (b) Running times (in seconds) on an Intel Core 2
Duo at 2.2 GHz for 105 uniformly distributed points using Euclidean distance.

(a)

Method R
2

R
5

R
10

R
20

Bvka 2 2 2 2
Bvka-O 2.14 2.12 2.13 2.15
Bvka-LOC 1.58 1.66 1.92 2.15
Bvka-PQ-LOC 1.61 1.6 1.87 2.03

(b)

Dim. Bvka-PQ-LOC Bvka-A 0.1 Bvka-A 0.2

R
2 32 27 23

R
5 85 63 48

A performance comparison between MSTs and AMSTs is shown in Figure 2b.
We use X uniformly distributed in the hyper-cube [0, 1]20 and Euclidean dis-
tance. As argued before Bvka-LOC’s performance tends to Bvka-O’s in high-
dimensions. Bvka-A greatly improves the performance: it is 1.7 and 1.62 times
faster than Bvka-O and Bvka-LOC respectively when |X | = 104.

Computing the MST for |X | = 105 is not possible with classical algorithms
on standard computers, since approximately 5 · 109 distances must be computed
and stored. This means more than 18.6 GB if we use 32 bits to store each
computed distance. Using minimum memory (less than 20 MB), we were able to
compute the MST using Euclidean distance, without, explicitly nor implicitly,
exploiting the nature of the Euclidean space (i.e., without relying on Delaunay
triangulations). Table 2b presents the resulting running times for all considered
algorithms. Again, these results can be improved, as we did not perform any
tuning of the list-of-clusters.

Finally, more efficient search algorithms can be implemented for a given NNs
structure that might increase the performance of the proposed algorithms, such
as the best-bin-first or an optimized depth-first [15].

4 Final Remarks

The dominating factor when computing the MST of a feature setX is the number
of distance computations to be performed. We presented a method for computing
the MST based on a clever use of NNs search structures. It has O(n2) and O(n)
time and space complexities respectively. However, in practice it outperforms
classical algorithms for large, and low dimensional, datasets.

The same algorithm with a slight modification can also be used to compute the
AMST: instead of finding NNs, one finds approximate NNs. In high-dimensional
datasets, we showed the performance increase that results from using AMSTs.
Moreover, the computed AMSTs exhibit a stable behavior.

There are three conceptual main lines for future work. The first consists on
performing an experimental evaluation of NNs search structures and their in-
cidence on the performance of the proposed algorithm. This includes the eval-
uation of different criteria in list-of-clusters for selecting the centers and the
radii. Second, we did not explore other search algorithms [15] which may reduce
the number of distance computations per query. Finally, when using AMSTs, the
trade-off between enhanced speed and accuracy must be explored more carefully.

Last, from the implementation point of view, the proposed algorithms can be
parallelized without any reformulation. Moreover, in list-of-clusters, the exhaus-
tive search within a bucket can be implemented using vectorial processors as the
bucket size is fixed.

References

1. Graham, R., Hell, P.: On the history of the minimum spanning tree problem.
Annals of the History of Computing 7(1), 43–57 (1985)

2. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper
Saddle River (1988)

3. Zahn, C.T.: Graph-Theoretical Methods for Detecting and Describing Gestalt Clus-
ters. Transactions on Computers C-20(1), 68–86 (1971)

4. Carreira-Perpiñán, M., Zemel, R.: Proximity graphs for clustering and manifold
learning. In: NIPS (2005)

5. Felzenszwalb, P., Huttenlocher, D.: Efficient Graph-Based Image Segmentation.
International Journal of Computer Vision 59(2), 167–181 (2004)

6. Lai, C., Rafa, T., Nelson, D.: Approximate minimum spanning tree clustering in
high-dimensional space. Intelligent Data Analysis 13(4), 575–597 (2009)

7. Eddy, W., Mockus, A., Oue, S.: Approximate single linkage cluster analysis of
large data sets in high-dimensional spaces. Computational Statistics & Data Anal-
ysis 23(1), 29–43 (1996)

8. Bentley, J., Friedman, J.: Fast Algorithms for Constructing Minimal Spanning
Trees in Coordinate Spaces. Transactions on Computers 27(2), 97–105 (1978)

9. Leibe, B., Mikolajczyk, K., Schiele, B.: Efficient Clustering and Matching for Ob-
ject Class Recognition. In: BMVC (2006)

10. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
11. Tepper, M., Musé, P., Almansa, A., Mejail, M.: Boruvka Meets Nearest Neighbors.

Technical report, HAL: hal-00583120 (2011)
12. Toyama, J., Kudo, M., Imai, H.: Probably correct k-nearest neighbor search in high

dimensions. Pattern Recognition 43(4), 1361–1372 (2010)
13. Chavez, E., Navarro, G.: An Effective Clustering Algorithm to Index High Dimen-

sional Metric Spaces. In: SPIRE (2000)
14. Chávez, E., Navarro, G.: A compact space decomposition for effective metric in-

dexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)
15. Samet, H.: Depth-First K-Nearest Neighbor Finding Using the MaxNearestDist

Estimator. In: ICIAP (2003)

	Boruvka Meets Nearest Neighbors
	1 Introduction
	2 A Nearest Neighbors Approach
	2.1 Approximate MST

	3 Experimental Results
	4 FinalRemarks
	References

