Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41761
Cómo citar
Título: | Multimodal graphical models via Group Lasso |
Autor: | Hariri, Ahamd Musé, Pablo Fiori, Marcelo Sapiro, Guillermo |
Tipo: | Ponencia |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2013 |
Resumen: | Graphical models are a very useful tool to describe and understand natural phenomena, from gene expression and brain networks to climate change and social interactions. In many cases, the data is multimodal. For example, one may want to build one network from several fMRI (functional magnetic resonance imaging) studies from different subjects, or combine different data modalities (as fMRI and questions) for several subjects. To this end, in this work we combine group lasso with graphical lasso, and derive an iterative shrinkage thresholding algorithm for solving the proposed optimization problem. The framework is validated with synthetic data and real fMRI data, showing the advantages of combining different modalities in order to infer the underlying network structure. |
EN: | Signal Processing with Adaptive Sparse Structured Representations. SPARS 2013. EPFL, Lausanne, 8-11 jul., 2013. |
Citación: | Hariri, A, Musé, P, Fiori, M, Sapiro, G. "Multimodal graphical models via Group Lasso". Signal Processing with Adaptive Sparse Structured Representations. SPARS 2013. EPFL, Lausanne, 8-11 jul., 2013. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Mutimoldal graphical.pdf | 140,88 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons