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Abstract—Graphical models are a very useful tool to describe and
understand natural phenomena, from gene expression and brain networks
to climate change and social interactions. In many cases, the data is
multimodal. For example, one may want to build one network from
several fMRI (functional magnetic resonance imaging) studies from
different subjects, or combine different data modalities (as fMRI and
questions) for several subjects. To this end, in this work we combine group
lasso with graphical lasso, and derive an iterative shrinkage thresholding
algorithm for solving the proposed optimization problem.

The framework is validated with synthetic data and real fMRI data,
showing the advantages of combining different modalities in order to
infer the underlying network structure.

I. INTRODUCTION

The estimation of the inverse of the covariance matrix is a very
important problem with applications in a number of fields. The
covariance selection problem consists in identifying the zero pattern
of the precision matrix. Two basic approaches have been developed
for estimating the structure of the graphical model when this is
sparse, and have been proved successful specially when working
with few data points k < p, namely, the regression approach [1]
and the maximum likelihood, also called Graphical Lasso [2]. The
formulation of this latter one is:

max
Θ�0

log det Θ− tr(SΘ)− λ||Θ||`1 ,

where S is the empirical covariance matrix and ||Θ||`1 =
∑

i,j |Θij |.
Let us suppose now that we want to infer n covariance matrices,

but such that they (roughly) share the non-zero pattern. This can be
done by means of the group lasso [3], [4]: in this case, we group
all the entries (i, j) of the matrices Θh, and form an n−dimensional
vector whose l2 norm will be penalized in the objective optimization
function. This way, the sum of penalty terms for all groups promotes
sparsity, in the sense that only a few groups will be active (and
so each matrix Θh will be sparse), but once a group is active, the
corresponding n coefficients (the (i, j) entries for all Θh) will be all
non-zero in general. The optimization problem to solve is

max
Θ�0

∑
h

log det Θh −
∑
h

tr(ShΘh)− λ
∑
i,j

||Θij ||2 (1)

where (with a slight abuse of notation) Θij is now an n-dimensional
vector with the (i, j) entries of all matrices Θh. This problem is still
convex, and we have adapted the ISTA algorithm [5], with the code
available in www.fing.edu.uy/∼mfiori.

II. SYNTHETIC DATA EXAMPLES

In this section the model and algorithm are assessed with two
different experiments: in the first one we show how the performance
of the grouped methodology improves as the number of groups grows,
and we also compare it with concatenating the data instead of the
grouping approach. In the second one we show that this methodology
is able to mix different kinds of data (e.g. gaussian and discrete).

For the first experiment, we randomly generated six precision
matrices with the same support (but different non-zero values), for
p = 60. For each matrix we simulated Gaussian data Xh ∈ k × p
for k = 30. Figure 1 (left) shows how the performance of the
model (1) improves with the number of considered groups, and

how the concatenation degrades the performance. In solid black line,
estimation using only one dataset (X1). Below it (dashed black),
using the concatenation of different subsets. Above it, using the
grouped methodology with: 2, 3, 4, 5 and 6 groups (blue and red).

0 0.1 0.2 0.3 0.4 0.5

0.3

0.5

0.7

0.9

1

FP
T

P
0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

1

FP

T
P

Fig. 1: True Positives vs False Positives on detected edges of the true
graph. Left: comparison for several groups. Right: Discrete and Gaussian
data. In dashed blue, using only gaussian data X, in dashed black using
only discrete data Y , and in solid black using the grouped methodology.

For the second experiment, we generated a Gaussian Graphical
Model and a Discrete Graphical model, sharing the same zero-pattern
of the inverse covariance matrix, and simulated data from both of
them, X and Y respectively. Figure 1 (right) shows the performance
when inferring the zero-pattern only from X , only from Y , and with
the combination of both via the optimization problem (1).

III. APPLICATION TO FMRI DATA

Here we show how this collaborative learning can help to build
brain networks for different groups of subjects. For an fMRI study
of 155 subjects, we split the dataset into 105 for training and 50
for testing (data from http://www.haririlab.com/brain.php). With the
training we built one network for males (AM ) and another one for
females (AF ), using the grouped methodology (1). Then, for each
subject in the testing set, we built the brain network from the fMRI
data, and classified as male of female according to the closest graph
adjacency matrix (AM or AF ). To compare the performance, we also
classified each subject with a nearest neighbor criteria with respect to
all the subjects in the training set. When classifying with this latter
method, a classification performance of 60% is achieved, while a
performance of 80% is reached when building one coherent network
for each gender.

REFERENCES

[1] J. Peng, P. Wang, N. Zhou, and J. Zhu, “Partial correlation estimation
by joint sparse regression models.” Journal of the American Statistical
Association, vol. 104, no. 486, pp. 735–746, Jun. 2009.

[2] O. Banerjee, L. El Ghaoui, A. D’Aspremont, and G. Natsoulis, “Convex
optimization techniques for fitting sparse Gaussian graphical models,”
ICML ’06, pp. 89–96, 2006.

[3] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society: Series B,
vol. 68, no. 1, pp. 49–67, 2006.

[4] G. Varoquaux, A. Gramfort, J.-B. Poline, and B. Thirion, “Brain co-
variance selection: better individual functional connectivity models using
population prior,” in NIPS’10, 2010, pp. 2334–2342.

[5] B. Rolfs, B. Rajaratnam, D. Guillot, I. Wong, and A. Maleki, “Iterative
thresholding algorithm for sparse inverse covariance estimation,” in NIPS
2012, 2012, pp. 1583–1591.


