Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41312
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Silini, Riccardo | - |
dc.contributor.author | Lerch, Sebastian | - |
dc.contributor.author | Mastrantonas, Nikolaos | - |
dc.contributor.author | Kantz, Holger | - |
dc.contributor.author | Barreiro, Marcelo | - |
dc.contributor.author | Masoller, Cristina | - |
dc.date.accessioned | 2023-11-20T13:18:50Z | - |
dc.date.available | 2023-11-20T13:18:50Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Silini, R, Lerch, S, Mastrantonas, N, [y otros autores]. "Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing". Earth System Dynamics. [en línea] 2022, 13: 1157–1165. 9 h. DOI: 10.5194/esd-13-1157-2022 | es |
dc.identifier.issn | 2190-4979 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/41312 | - |
dc.description.abstract | The Madden–Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10 to 90 d) timescale. An improved forecast of the MJO may have important socioeconomic impacts due to the influence of MJO on both tropical and extratropical weather extremes. Although in the last decades state-of-the-art climate models have proved their capability for forecasting the MJO exceeding the 5-week prediction skill, there is still room for improving the prediction. In this study we use multiple linear regression (MLR) and a machine learning (ML) algorithm as post-processing methods to improve the forecast of the model that currently holds the best MJO forecasting performance, the European Centre for Medium-Range Weather Forecasts (ECMWF) model. We find that both MLR and ML improve the MJO prediction and that ML outperforms MLR. The largest improvement is in the prediction of the MJO geographical location and intensity. | es |
dc.format.extent | 9 h. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | European Geosciences Union | es |
dc.relation.ispartof | Earth System Dynamics, 2022, 13: 1157–1165 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Madden–Julian Oscillation | es |
dc.subject | Weather forecast | es |
dc.subject | Climate models | es |
dc.title | Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing | es |
dc.type | Artículo | es |
dc.contributor.filiacion | Silini Riccardo | - |
dc.contributor.filiacion | Lerch Sebastian | - |
dc.contributor.filiacion | Mastrantonas Nikolaos | - |
dc.contributor.filiacion | Kantz Holger | - |
dc.contributor.filiacion | Barreiro Marcelo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. | - |
dc.contributor.filiacion | Masoller Cristina | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.5194/esd-13-1157-2022 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
10.5194esd-13-1157-2022.pdf | 2,64 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons