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Abstract. The Madden–Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10 to
90 d) timescale. An improved forecast of the MJO may have important socioeconomic impacts due to the influ-
ence of MJO on both tropical and extratropical weather extremes. Although in the last decades state-of-the-art
climate models have proved their capability for forecasting the MJO exceeding the 5-week prediction skill, there
is still room for improving the prediction. In this study we use multiple linear regression (MLR) and a machine
learning (ML) algorithm as post-processing methods to improve the forecast of the model that currently holds
the best MJO forecasting performance, the European Centre for Medium-Range Weather Forecasts (ECMWF)
model. We find that both MLR and ML improve the MJO prediction and that ML outperforms MLR. The largest
improvement is in the prediction of the MJO geographical location and intensity.

1 Introduction

The Madden–Julian Oscillation (MJO) with its 30 to 60 d
oscillation is the major sub-seasonal fluctuation in tropical
weather (Madden and Julian, 1971, 1972; Vitart, 2009; Lau
and Waliser, 2011; Zhang et al., 2013; Ferranti et al., 2018). It
is the main source of intra-seasonal fluctuations in the Indian
monsoon (Taraphdar et al., 2018; Díaz et al., 2020) and is
also known to modulate the tropical cyclogenesis (Camargo
et al., 2009; Klotzbach, 2010; Fowler and Pritchard, 2020),
to have a two-way interaction with El Niño–Southern Os-
cillation (ENSO) (Bergman et al., 2001), to influence the
Asian–Australian monsoon (Wheeler et al., 2009), and to
be influenced by the quasi-biennial oscillation (Wang et al.,

2019; Martin et al., 2021b). Moreover, the MJO not only af-
fects the tropical weather, but also the extratropical weather
through teleconnections (Alvarez et al., 2017; Ungerovich
et al., 2021). Therefore, MJO has a large impact on the econ-
omy, society, and agriculture, motivating the wide interest in
its prediction.

Many efforts have been made in this direction in the last
decades, with dynamical models leading to the current best
forecasts (Jiang et al., 2020), but despite the continuous
progress of the dynamical models, there is still room for im-
provement in the MJO prediction (Zhang et al., 2013; Jiang
et al., 2020). In particular, an improvement of the prediction
skill when MJO crosses the Maritime Continent (MC) barrier
(Wu and Hsu, 2009; Kim et al., 2016; Barrett et al., 2021)
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will be of practical importance due to the influence of MJO
on ENSO, as an improved MJO prediction may contribute to
improving the prediction of ENSO.

Machine learning (ML) algorithms are being extensively
used in many fields, and they are gaining a foothold in
weather and climate forecasts (O’Gorman and Dwyer, 2018;
Nooteboom et al., 2018; Dijkstra et al., 2019; Ham et al.,
2019; Dasgupta et al., 2020; Tseng et al., 2020; Gagne II
et al., 2020; Silini et al., 2021) among many others. Although
MJO predictions obtained using ML models do not outper-
form dynamical models (Silini et al., 2021; Martin et al.,
2021a), a hybrid approach, combining dynamical models and
ML techniques, may improve the results. In this way, it is
possible to use dynamical models that have been developed
across decades, based on physical phenomena, in combina-
tion with data-driven ML techniques, an approach that has
shown its ability to reduce the gap between observations and
dynamical models’ forecasts (Rasp and Lerch, 2018; Mc-
Govern et al., 2019; Scheuerer et al., 2020; Haupt et al., 2021;
Vannitsem et al., 2021).

Recently, it has been shown that bias correction in lin-
ear dynamics (Wu and Jin, 2021) and the use of deep learn-
ing (DL) (Kim et al., 2021) can improve the MJO prediction.
Specifically, Kim et al. (2021) have shown that the perfor-
mance of poor models becomes comparable to that of the best
model after DL correction. Here we deal with a related but
different problem: can we use a rather simple ML algorithm
– a single-hidden layer feed-forward neural network (FFNN)
– to improve the forecast of the model that provides the best
MJO prediction?

Currently, the best forecast dynamical model in terms of
MJO prediction skill is the one developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF)
(Jiang et al., 2020). Therefore, in this study we attempt to
improve ECMWF forecasts by using an artificial neural net-
work (ANN). We also analyze the performance of multiple
linear regression (MLR) as a baseline post-processing tool.

To quantify the forecast skill we use four metrics, namely
the bivariate correlation coefficient (COR), the bivariate root-
mean-square error (RMSE) with threshold values COR= 0.5
and RMSE= 1.4, and the amplitude error and the phase error
(Rashid et al., 2011).

We apply the post-processing ML and MLR techniques to
the ensemble mean of ECMWF, and we show that ML out-
performs MLR, being able to correct the ECMWF MJO fore-
casts, and the improvement lasts for longer than 4 weeks.
In particular, ML improves the prediction of the MJO over
the MC and its amplitude, while the phase errors obtained
with the two post-processing techniques are similar.

2 Data, methods and models

2.1 RMM data

For this study, we use the real-time multivariate MJO (RMM)
index (Wheeler and Hendon, 2004) as labels for the super-
vised learning method, which is used to characterize the MJO
geographical position and intensity. The first two princi-
pal components of the combined empirical orthogonal func-
tions (EOFs) of outgoing longwave radiation (OLR), zonal
wind at 200 and 850 hPa averaged between 15◦ N and 15◦ S,
are labeled RMM1 and RMM2. With a polar transformation,
it is possible to define the MJO phase and amplitude. The
phase is divided into eight classes, each corresponding to a
different sector of the phase diagram defining the observed
MJO life cycle. The amplitude, describing the MJO intensity,
when smaller than 1 defines a non-active MJO. The ERA5
RMM1 and RMM2 from 13 June 1999 to 29 June 2019 were
downloaded from ECMWF (2021). This time window is se-
lected to match the ECMWF reforecasts, presented in the
previous section.

2.2 ECMWF RMM reforecasts

The samples used as input for the ANN and to assess
the model performance are ECMWF reforecasts with Cyr-
cle 46r1 freely available from ECMWF (2021). This dataset
is composed of 110 initial dates per year for 20 years, be-
tween 13 June 1999 and 29 June 2019. In total there are 2200
starting dates, from which a 46-lead-day prediction is avail-
able. The dataset provides the prediction of four variables:
the first two principal components of the RMM index and
their polar transformation. For each starting day and vari-
able there are 12 time series of 46 points. One is the con-
trolled forecast (cf) corresponding to a forecast without any
perturbations, and then there are 10 perturbed forecasts mem-
bers (pf) which have slightly different initial conditions from
the cf to take into consideration errors in observations and
the chaotic nature of weather. Finally there is the ensemble
mean (em), which corresponds to the mean of the 11 mem-
bers (cf+ 10 pf). In this particular study, we made use solely
of the em data.

2.3 Prediction skill

To know how good a model is in predicting, we present here
the metrics that will be used. For sake of comparison, we
use the same metrics adopted in Kim et al. (2018), which
are adapted from Lin et al. (2008) and Rashid et al. (2011),
where they define the COR and RMSE as follows:
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RMSE(τ )=
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|a1(t)− b1(t, τ )|2+ |a2(t)− b2(t, τ )|2

]
, (2)

where a1(t) and a2(t) correspond to the observed RMM1 and
RMM2 at time t , while b1(t, τ ) and b2(t, τ ) will be the re-
spective forecasts for time step t for a lead time of τ days,
and N is the number of forecasts. The bivariate correlation
coefficient expresses the strength of the linear relationship
between the forecasts and the observations, while the root-
mean-square error compares the difference between the val-
ues of the forecasts and the observations.

In this study we use COR= 0.5 and RMSE= 1.4 as pre-
diction skill thresholds (Rashid et al., 2011). The RMM pre-
diction skill is defined as the time in which the COR takes a
value below 0.5 and RMSE gets above 1.4. For a given lead
time, the COR and RMSE are the average value up to that
lead time.

2.4 Amplitude and phase error

To characterize the MJO it is convenient to perform a
change of coordinates from Cartesian to polar (RMM1,
RMM2)→ (A, ϕ). The MJO amplitude A(t), describing its
intensity, can be written as follows:

A(t)=
√

RMM12(t)+RMM22(t), (3)

while the MJO phase ϕ(t), describing the geographical posi-
tion of the enhanced rainfall region center, can be written as
follows:

ϕ(t)= tan−1
(

RMM2(t)
RMM1(t)

)
. (4)

By definition Rashid et al. (2011), the amplitude error for
a given lead time EA(τ ) can be expressed as follows:

EA(τ )=
1
N

N∑
t=1

(
Apred(t, τ )−Aobs(t)

)
, (5)

where N represents the number of predicted days, Aobs(t) is
the observation amplitude at time t , andApred(t, τ ) is the pre-
diction amplitude at time t with a lead time of τ days. The
phase error Eϕ(τ ) is defined by

Eϕ(τ )=
1
N

N∑
t=1

tan−1
(
a1(t)b2(t, τ )− a2(t)b1(t, τ )

a1(t)b1(t, τ )

)
, (6)

where a1(t) and a2(t) correspond to the observed RMM1 and
RMM2 at time t , while b1(t, τ ) and b2(t, τ ) correspond to the

Figure 1. ANN architecture employed for this study.

predicted RMM1 and RMM2 at time t with a lead time of
τ days. These two metrics allow us to analyze in more detail
the model performance to predict the MJO, in conjunction
with COR and RMSE.

2.5 Post-processing methods

The post-processing machine learning tool built for this study
is a fully connected feed-forward neural network (FFNN)
composed of an input layer containing Nin neurons, a sin-
gle hidden layer with Nh neurons, and an output layer with
Nout neurons, as shown in Fig 1. The activation function
used is the rectified linear unit (ReLU), which transforms the
weighted sum of the input values by returning 0 in case of
a negative sum, and the result of the sum otherwise. Deal-
ing with a supervised regression problem, the mean-squared
error (MSE) is extensively employed as loss function, and it
is used in the framework of this study to compare the neu-
ral network output with the observations (labels). An adap-
tive optimizer (Adam) is selected to automatically manage
the learning rate during the training phase.

We use an adaptive number of neurons depending on the
number of days we want to forecast. The ECMWF refore-
casts provide predictions up to a lead time of 46 d for both
RMM1 and RMM2, and we build a different network for
each lead time. This means that the number of output neu-
rons Nout can fall between 2 and 92 because we use both
RMM1 and RMM2.

After selecting the number of output neurons (which is
even and in fact defines our lead time, τ =Nout/2), we adapt
the number of input Nin and hidden neurons Nh as fol-
lows. As input, the networks receive the ECMWF refore-
casts, which also limit the number of input neurons Nin in
the range between 2 and 92. After training the networks
with different Nin, we found the best result is obtained with
Nin =Nout+ 6 with an upper limit of 92. This means that
for all lead times τ > 44, Nin =Nout = 92. For lead times
larger than 30–35 d, the prediction skill of the models falls
below the thresholds of 0.5 and 1.4 imposed by the COR and
RMSE, respectively, and thus, the lead times τ > 44 are not
important to predict. Using all 92 inputs, the prediction skill
for short lead times slightly decreases. For simplicity, a fixed
number of 92 inputs could also be used. An interpretation
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Figure 2. (a) MJO amplitude error and (b) amplitude RMSE (b) as a function of the lead time for events starting with an amplitude larger
than 1. The color indicates the forecast model, the black line corresponds to the ECMWF forecast, the blue line corresponds to the MLR
correction of the ECMWF forecast, and the orange line corresponds to the post-processed ECMWF forecast with an ANN.

of the reason behind this result is that to correct the predic-
tion values for a given day, the future predicted values can
help up to some extent. To correct the prediction of a given
day, for each RMM we use the predicted values of up to 3 d
after that particular day. To avoid overfitting, we want the
number of hidden neurons to be relatively small, and for this
reason after some tests we select Nh =Nin/2. The training
has been performed over 100 epochs which allows us to not
overfit the model. The model performance is tested using a
walk-forward validation. The procedure is as follows. First,
we train the network on an expanding train set and then test
its performance on a validation set that contains the N sam-
ples that follow the train set. In our case, we found that the
optimal minimum number of samples for the train set, out of
2200 available, is 1700 (∼ 17 years). Then, the train set is ex-
tended by 100 samples (∼ 1 year) for each run and validated
on the subsequent 200 samples (∼ 2 years). This method of
walk-forward validation ensures that no information coming
from the future of the test set is used to train the model. Other
methods to avoid overfitting could also be used, such as early
stopping or drop-out.

MLR is the well-known least squares linear regression
where the observed RMMs are a linear combination of the
ECMWF-predicted RMMs. To compute the MLR we use the
Python library scikit-learn (Pedregosa et al., 2011).
With MLR we correct the RMMs separately and apply the
same walk-forward validation used for the ANNs.

3 Results

The first part of this section will be devoted to the results
obtained for the MJO amplitude and phase. In the second part
we present the prediction skill assessment using the COR 0.5
level, and RMSE 1.4 level as metrics, while in the last part
of the section we show how the different forecast methods
perform for different MJO initial phases.

The results are obtained by training the ANN from
13 June 1999 using a walk-forward validation and averag-
ing the error obtained by testing over different unseen time

Figure 3. MJO phase error for events starting with an amplitude
larger than 1. The color indicates the forecast model, the black line
corresponds to the ECMWF forecast, the blue line corresponds to
the MLR correction of the ECMWF forecast, and the orange line
corresponds to the post-processed ECMWF forecast with an ANN.

windows from 5 December 2014 to 29 June 2019. The size
of the windows is defined by the selected number of initial
days from which the ECMWF forecast starts. Due to the bi-
weekly acquisition of ECMWF, this means that each window
of 200 points corresponds to 2 years approximately. Each
member of the ensemble over which the average is performed
corresponds to a test set used for the walk-forward validation.
Different sizes of the test set between 100 and 500 samples
have been tested, leading to prediction skills that vary sensi-
bly. For this reason, it is important to take into account that
results may vary depending on the test set and its size, al-
beit preserving the same general result: the post-processing
corrections improve the ECMWF forecasts.

In Fig. 2, we show the error on the MJO amplitude for
events starting with an amplitude larger than 1. We can no-
tice an underestimation of the amplitude as expected (Jiang
et al., 2020). Nevertheless, the post-processed amplitudes are
closer to the observed ones, with respect to the raw ECMWF
forecast. The maximum improvement occurs for a lead time
of 28 d when the ECMWF-ANN model has a RMSE similar
to the RMSE of the uncorrected ECMWF at a lead time of
20 d.
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By the definition of the amplitude error, errors of opposite
sign could potentially cancel out resulting in misleading con-
clusions. For this reason in Fig. 2 we also provide the RMSE
of the amplitude error, which shows a similar behavior to
before. Both post-processing techniques improve the results,
with the ANN bringing the highest benefits in terms of the
magnitude of error reduction and the forecasting horizon of
the improvement.

In Fig. 3, we present the MJO phase error. The post-
processing techniques provide an improved prediction, dur-
ing which all three models predict a negative phase. A posi-
tive phase error indicates a faster propagating MJO, while a
negative error represents a slower propagation. The ECMWF
forecast shows an overall slower propagation of the MJO
with respect to the observations, and both post-processing
corrections provides an increment of the MJO speed pre-
diction. In particular, at the 18 d lead time we can notice
an increment of the ECMWF phase error, which MLR and
ML tend to correct.

Figure 4, shows the COR and RMSE of the ECMWF en-
semble mean forecasts, the MLR, and ANN post-processing.
A COR of 0.5 is taken here as baseline for useful prediction
skill. We see an improvement of the a prediction skill at the
COR= 0.5 level of about 1 d. However, in terms of RMSE,
up to a lead time of 4 weeks, neither post-processing tech-
nique crosses the RMSE threshold of 1.4, and therefore, they
both improve the prediction skill with respect to the raw, un-
processed output of the ECMWF model.

In Fig. 5, we display the comparison between the ob-
servations, the ECMWF forecast, and its corrections, in a
Wheeler–Hendon phase diagram for two different starting
dates of the same MJO event. The dots are marked every 7 d
to identify the weeks. In the left panel, the 3-week predic-
tion starts on 21 November 2018 and displays its progression
from the Western Hemisphere over the Indian Ocean. It is
possible to notice that both post-processing techniques dis-
play very similar prediction, with a slightly larger amplitude
than ECMWF, closer to the observations for all lead times.
In the right panel, the 3-week prediction starts on 5 Decem-
ber 2018 in the Indian Ocean. We can see a drop of accuracy
in the ECMWF prediction, and the MLR post-processing, ap-
proaching the MC. The ML correction instead preserves a
larger amplitude, closer to the observations.

It is also possible to notice that while the speed of the MJO
event is well predicted in the left panel, in the right one there
is a drop of the MJO speed forecast over the Indian Ocean
and MC.

Here we presented an example of a strongly active MJO
event, where the corrections clearly improve the ECMWF
prediction and it is among the best found. All predictions
from 12 December 2014 to 18 June 2019 can be found
in Silini (2021b). Looking at these results it is possible to
appreciate the general improvement provided by the post-
processing corrections.

Finally we study the amplitude error, phase error, COR,
and RMSE, as a function of the different initial phases of
MJO. As displayed in Fig. 6, applying post-processing meth-
ods improves the amplitude error for all initial phases. The
MLR provides an improvement with respect to the ECMWF
model, but the ML correction leads to the lowest error. Con-
cerning the initial phases, we find the lowest amplitude error
when an MJO event starts over the MC, while the largest
is found in phase 2, over the Indian Ocean. With the MJO
propagating at an average speed of 5 m s−1, events start-
ing in phase 2 will cross the MC in 2–3 weeks time (Kim
et al., 2014). The phase error displays a large worsening of
the MJO localization prediction, when the forecast starts be-
tween the MC and Western Pacific (phase 6–8). This obser-
vation is consistent with Fig. 5, where we noticed a drop in
the accuracy of the MJO speed prediction over the Indian
Ocean and MC. The COR finds its maximum when start-
ing over the MC continent, consistently with the amplitude
error. The ML correction has the highest COR except for
phase 8, where MLR leads to the highest one. The RMSE
is very consistent with the COR, in which we find the min-
imum in phase 4, with the ML correction having the lowest
error, except for phase 8. Overall, we can conclude that the
ML post-processing is worth applying especially to reduce
the error on the amplitude prediction, while MLR could be
useful for a better prediction of the MJO location.

4 Discussion

This study confirms the potential of post-processing tech-
niques to reduce the knowledge and bias gap between dy-
namical model forecasts and observations, providing ad-
vancement in MJO prediction.

It is interesting to compare the results presented in Fig. 4
with those reported in Fig. 7 of the Supplement in Kim et al.
(2021), keeping in mind that Kim et al. (2021) show the mean
BCOR for the eight dynamical models considered. While
it can be seen in Fig. 7 in Kim et al. (2021) that for short
lead times (up to 2 weeks) a clear improvement with DL
post-processing is obtained, the average BCOR for short lead
times is quite low compared to the ECMWF prediction. We
can also notice that the improvement obtained by Kim et al.
(2021) fades away by the fourth week. In contrast, in our
case, for short lead times there is no significant improvement
(as could be expected, due to the fact that ECMWF model
provides the best MJO forecast), but our improvement lasts
for longer lead times.

It is also interesting to compare the different post-
processing approaches used. While we use a feed-forward
neural network (FFNN) architecture, Kim et al. (2021) used a
Deep Learning (DL) network, specifically, a long short-term
memory (LSTM) network. Having a simpler architecture,
FFNNs are usually faster to train and to use than LSTMs.
While LSTMs have been proven to be powerful for time se-

https://doi.org/10.5194/esd-13-1157-2022 Earth Syst. Dynam., 13, 1157–1165, 2022



1162 R. Silini et al.: Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing

Figure 4. (a) COR and (b) RMSE as a function of the forecast lead time for events starting with an amplitude larger than 1. The color
indicates the forecast model and the red dashed line indicates the prediction skill threshold of COR= 0.5 and RMSE= 1.4. The black line
corresponds to the ECMWF forecast, the blue line corresponds to the post-processed ECMWF forecast with MLR, while in orange it is
shown the post-processed ECMWF forecast with an ANN.

Figure 5. Wheeler–Hendon phase diagram for two different starting dates of the same MJO event, and a 3-week prediction. Panel (a) starting
date is 21 November 2018. The MJO enhanced rainfall region travels across the Western Hemisphere and Indian Ocean. Panel (b) starting
date is 5 December 2018 and represents a 3-week prediction approaching and traveling over the MC. The rotation of the event in the phase
diagram is counter-clockwise, and the dots are included every 7 d, marking the different weeks.

quence modeling, as shown in Kim et al. (2021), in our case
we are not trying to predict the future of a time series using
its past, but we are trying to improve the predictions.

There are other differences in the architecture of the net-
works used: we found that to improve the prediction of
the RMMs for a day t , the information in the past and fu-
ture predictions can both help the correction, while in Kim
et al. (2021), the future model’s predictions (which are avail-
able) are not used for the correction. Another difference is
that while the algorithm used by Kim et al. (2021) per-
forms an expansion of the system dimensionality (hidden
nodes> input nodes), we found good results performing a
compression (hidden nodes< input nodes).

Comparing our results to those of post-processing ensem-
ble weather predictions on medium-range timescales (Van-
nitsem et al., 2021), we find that the general magnitude of
improvements over the predictions of the dynamical model
is lower. This indicates the increasingly difficult challenge to
obtain accurate MJO predictions for longer lead times, likely

due to a generally lower predictability and a lower level of
useful information that can be learned from the raw ensemble
predictions compared to those of many other weather vari-
ables on shorter timescales. That said, our results indicating
the potential of modern DL methods to improve over clas-
sical statistical approaches are well in line with the findings
for medium-range post-processing (Rasp and Lerch, 2018;
Vannitsem et al., 2021; Haupt et al., 2021).

5 Conclusions

We employed a MLR and a ML algorithm to perform a
post-processing correction of the prediction of the dynam-
ical model that currently holds the highest MJO prediction
skill (Jiang et al., 2020), developed by ECMWF.

The largest improvement is found in the MJO amplitude
and phase individually, which decreases the underestimation
of the amplitude, providing a more accurate predicted geo-
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Figure 6. (a) Amplitude error, (b) phase error, (c) COR, and
(d) RMSE, for the different MJO initial phases, for events start-
ing with an amplitude larger than 1. The plots show the mean for
lead times up to 5 weeks. The different colors represent the differ-
ent prediction methods.

graphical location of the MJO. The amplitude and phase es-
timation are improved for all lead times up to 5 weeks.

We obtained an improved prediction skill of about 1 d for
a COR of 0.5.

Plotting the forecasts in a Wheeler–Hendon phase dia-
gram we found an improvement in predicting the MJO prop-
agation, notably across the MC, which helps overcome the
MC barrier.

Considering the results obtained for each initial MJO
phase, we found that both post-processing tools improve the
prediction, with the ML correction being the best.

The ML technique provides an improvement over MLR
for all initial phases except phase 8. In the case of phase fore-
cast it might be also sufficient to use MLR instead of ML.
This suggests a predominance of linear corrections to im-
prove the MJO phase forecast.

Due to the influence of the initial phase, amplitude, and
season on the prediction skill, it would be ideal to train the
ANNs for the different initial conditions, but this is not pos-
sible because of the limited data that are available for the
training.

As future work, it would be interesting to test a stochastic
approach to post-processing (as in Rasp and Lerch, 2018),
which would allow us to obtain a probabilistic forecast. A
promising path to further reduce the prediction error is to
include other informative variables as inputs to the ANNs
in conjunction with the ECMWF predictions. These addi-
tional variables should be carefully selected using methods
of causal inference such as well-known Granger causality
(Granger, 1969), transfer entropy (Schreiber, 2000; Paluš and
Vejmelka, 2007) and convergent cross mapping (Sugihara
et al., 2012), or the recently proposed pseudo transfer entropy
(Silini and Masoller, 2021; Silini et al., 2022).

Although the improvement provided by the MLR and
ML techniques, a post-processing method will always
strongly rely on the accuracy of the dynamical model’s fore-
casts. For this reason, it is crucial to work on both dynamical
models and machine learning methods to progress.

Code and data availability. The Keras TensorFlow
(Abadi et al., 2015) trained FFNN can be found at
https://doi.org/10.5281/zenodo.5801453 (Silini, 2021a). The
RMM data and the ECMWF reforecasts can be freely downloaded
from ECMWF (2021).
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