Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41164
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Larroca, Federico | es |
dc.contributor.author | Rougier, Jean-Louis | es |
dc.date.accessioned | 2023-11-14T17:04:37Z | - |
dc.date.available | 2023-11-14T17:04:37Z | - |
dc.date.issued | 2012 | es |
dc.date.submitted | 20231114 | es |
dc.identifier.citation | Larroca, F, Rougier, JL."Minimum delay load-balancing via nonparametric regression and no-regret algorithms" [Preprint] Publicado en Computer Networks, 2012 v. 56, n.4, pp. 1152-1166. https://doi.org/10.1016/j.comnet.2011.11.015 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/41164 | - |
dc.description.abstract | In the current network scenario, where traffic is increasingly dynamic and resource demanding, Dynamic Load-Balancing (DLB) has been shown to be an excellent Traffic Engineering tool. In particular, we are interested in the problem of minimum delay load-balancing. That is to say, we assume that the queueing delay of a link is given by a function of its load. The objective is then to adjust the traffic distribution over paths so that, for the current traffic demand, the addition of these functions times the load is minimized. The contribution of our article is twofold. Firstly, we analyze the possibility of using so-called no-regret algorithms to perform the load balancing. As opposed to other distributed optimization algorithms (such as the classical gradient descent) the algorithm we discuss requires no fine-tuning of any speed-controlling parameter. Secondly, we present a framework that does not assume any particular model for the queueing delay function, and instead learns it from measurements. This way, the resulting mean delay of optimizing with this learnt function is an excellent approximation of the real minimum delay traffic distribution. The whole framework is illustrated by several packet and flow level simulations. Keywords: Wardrop Equilibrium, Convex Nonparametric Least Squares, Weighted Least Squares, No-Regret | es |
dc.language | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Wardrop equilibrium | es |
dc.subject | Convex nonparametric least squares | es |
dc.subject | Weighted least squares | es |
dc.subject | No-regret | es |
dc.subject.other | Telecomunicaciones | es |
dc.title | Minimum delay load-balancing via nonparametric regression and no-regret algorithms | es |
dc.type | Preprint | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Telecomunicaciones | - |
udelar.investigation.group | Análisis de Redes, Tráfico y Estadísticas de Servicios | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
LR12.pdf | 512,99 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons