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Abstract

In the current network scenario, where traffic is increasingly dynamic and resource demanding, Dynamic Load-Balancing
(DLB) has been shown to be an excellent Traffic Engineering tool. In particular, we are interested in the problem of
minimum delay load-balancing. That is to say, we assume that the queueing delay of a link is given by a function of
its load. The objective is then to adjust the traffic distribution over paths so that, for the current traffic demand, the
addition of these functions times the load is minimized. The contribution of our article is twofold. Firstly, we analyze
the possibility of using so-called no-regret algorithms to perform the load balancing. As opposed to other distributed
optimization algorithms (such as the classical gradient descent) the algorithm we discuss requires no fine-tuning of
any speed-controlling parameter. Secondly, we present a framework that does not assume any particular model for the
queueing delay function, and instead learns it from measurements. This way, the resulting mean delay of optimizing with
this learnt function is an excellent approximation of the real minimum delay traffic distribution. The whole framework
is illustrated by several packet and flow level simulations.
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1. Introduction

Two aspects of the current networking scenario call for
new and more effective ways of handling traffic. First of
all, service convergence in the same network, in addition
to the ever increasing access rates available for end-users,
have led to very dynamic and unpredictable traffic pat-
terns. Secondly, the assumption that overprovisioning is
the panacea for all problems is being increasingly recon-
sidered. This is due on the one hand to the emergence of
new architectures with intrinsically scarce resources (e.g.
Wireless Mesh Networks), and on the other hand to the
fact that the assumption that core capacities are orders of
magnitude higher than access rates may no longer hold in
the near future.

Robust Routing (RR) [1, 2, 3] has emerged in recent
years as a possible answer to the above problems. In RR,
traffic uncertainty is taken into account directly within
the routing optimization, computing a single routing con-
figuration for all traffic demands within an uncertainty set
where traffic is assumed to vary. This uncertainty set can
be defined in different ways, depending on the available in-
formation; e.g. largest values of link loads previously seen,
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a set of previously observed demands (previous day, same
day of the previous week, etc.). Although relatively simple
and naturally stable, RR presents some important draw-
backs. Firstly, the definition of the set of traffic demands
presents a clear tradeoff: larger sets are able to handle
a broader group of traffic demands, but at the cost of
routing inefficiency; conversely, tighter sets produce more
efficient routing schemes, but are subject to poor perfor-
mance guarantees [3]. Secondly, optimization under uncer-
tainty is generally more complex than classical optimiza-
tion, which forces the use of simpler optimization criteria.
In this sense, the typical objective is to minimize the max-
imum link utilization (MLU) in the network. Other more
complex objective functions (such as the one considered in
this article) generally result in a marginally bigger MLU
and an improvement in other performance indicators (such
as the mean link utilization) that may be significant (see
for instance [4, 5] or the results we present here).

To deal with these drawbacks,Dynamic Load-Balancing
(DLB) has been proposed [5, 6, 7, 8, 9]. In these schemes
each Origin-Destination (OD) pair is connected by sev-
eral, established a priori, paths. Based on feedback from
the network, each OD pair dynamically adjusts the por-
tion of its traffic sent through each path. The objective
is, given the configured paths and the current traffic de-
mand, to minimize a certain network-wide cost function.
Although this “always optimized” characteristic is very at-
tractive, the deployment of DLB has been, to say the least,
limited. Network operators are reluctant to use dynamic
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mechanisms mainly because they are afraid of a possible
oscillatory behavior of the algorithm used by each OD pair
to adjust their traffic distribution (as the early experiences
in ArpaNet has proved [10], these concerns are not with-
out reason). Indeed, previously proposed DLB algorithms
always include a parameter that controls the convergence
speed, which is very tricky to assign. Although for each al-
gorithm there exists a range for this parameter in which it
is stable, these values result in unresponsiveness in certain
situations.

Our first contribution is to present a Dynamic Load-
Balancing algorithm based on so-called no-regret algorithms.
The authors of [11] proved that OD pairs using algorithms
of this kind converge to a greedy equilibrium which may be
induced to coincide with the optimum we are looking for
(see the following sections for a more detailed discussion).
In particular, we will use a variation of the Incremen-
tally Adaptive Weighted Majority Algorithm [12], which
presents the advantage of being completely self-regulated,
thus avoiding any tricky speed-controlling parameter set-
ting and the reactivity-stability tradeoff we mentioned be-
fore. Furthermore, we will present certain adaptations of
the algorithm that are necessary to enable its use in the
presence of non-stationary traffic.

In most DLB schemes the objective function is the ad-
dition over all links of a certain link-cost function. The
idea is that this function should measure the congestion
on the link, for which the queueing delay is generally used.
The choice is justified by its versatility (big queueing de-
lays mean bad performance for all types of traffic) and sim-
ple algebra (the total delay of a path is the addition of the
delay at each link). However, most DLB schemes require
an analytical expression of this delay, for which classic and
oversimplistic models (e.g. M/M/1 ) are used [6], resulting
in an actual total delay that is significantly bigger than the
optimum.

As a second contribution of this article, we propose a
framework that makes very few assumptions on the delay
function. Except for some natural hypothesis on its shape
(e.g. monotonicity) we will only assume that the queue-
ing delay on link l is of the form fl(ρl) (i.e. depends only
on the mean load of the link). The actual form of fl(ρl)
will be obtained (or learned) from past measurements. To
achieve this we present two different regression methods.
The first one is a variation of the nonparametric regression
method presented in [15], and finds the regression function
that best fits the measurements. However, it presents scal-
ability issues as the number of available measurements in-
creases. We consider then the algorithm presented in [16].
This heuristic finds a parametric function that reasonably
adjusts the measurements in a very short time, although
its precision is not as good as the one obtained by the first
method.

The complete framework is illustrated by several flow
as well as packet level simulations using a real topology and
several real traffic demands. For instance, our study indi-
cates that using the M/M/1 model instead of our learned

function results in an increase in the total queueing de-
lay that may easily exceed 10%, and can go as high as
more than 80%. Moreover, the comparison with previ-
ous proposals in terms of link utilization shows that our
framework either outperforms them, or the difference is
not significant.

2. Greedy Load-Balancing

2.1. Network Model

The network is defined as a graph G = (V,E). In
it there are a number of so-called commodities (or OD
pairs), indexed by s = 1, .., S, specified in terms of the
triplet os, qs and ds; i.e. origin node, destination node and
a certain fixed demand of traffic from the former to the
latter. Commodity s can use any path from set Ps, where
each of its elements (noted as Psi with i = 1, .., ns) is a
subset of E connecting os to qs. In practice, paths are
chosen to be no less than two per commodity, and to differ
as much as possible for resiliency reasons. In particular, we
used the method presented in [26] to choose these paths.

All commodities can distribute their total demand ar-
bitrarily along their paths. In particular, commodity s
sends an amount dPsi

of its traffic through path Psi, where
dPsi

≥ 0 and
∑
dPsi

= ds. This distribution of traffic in-
duces the demand vector d = (dPsi

).
Given the demand vector, the total load on link l is

then ρl =
∑

s

∑
P∈Ps:l∈P dP . The presence of this traffic

on the link induces a certain mean queueing delay given
by the non-decreasing function Dl(ρl). The total delay of
path P is defined as DP =

∑
l:l∈P Dl(ρl). As the measure

of the network total congestion we shall use the mean end-
to-end queueing delay (or mean total delay, which is the
term generally used) D(d), defined as:

D(d) =

S∑

s=1

∑

P∈Ps

dPDP =

L∑

l=1

Dl(ρl)ρl :=

L∑

l=1

fl(ρl)

that is to say, a weighted mean delay, where the weight for
each path is how much traffic is sent through it, or in terms
of the links, the weight of each link is how much traffic is
traversing it. We prefer this weighted mean to a simple
total delay because it reflects more precisely performance
as perceived by traffic. Two situations where the total
delay is the same, but in one of them most of the traffic is
traversing heavily delayed links, should not be considered
as equivalent. Note that, by Little’s law, fl(ρl) := Dl(ρl)ρl
is proportional to the average number of bytes in the queue
of link l. We will then use this last value as fl(ρl) which
(like the mean load) is readily available in most routers.

We can now write the problem explicitly:

minimize
d

L∑

l=1

fl(ρl) s.t. dPsi
≥ 0

∑

P∈Ps

dP = ds (1)

Note that no explicit constraint on ρl was made. This
is assumed to be implicitly included in the delay function.
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For instance, if there exists a capacity constraint, fl(ρl)
should go to infinity (or a big value) as ρl reaches cl (the
capacity of link l). It should also be noted that in the
framework described above the destination for a commod-
ity is not necessarily a single node (e.g. two gateways to
the internet may be seen as a single destination).

2.2. Wardrop Equilibrium

In this section we present and discuss how to solve
problem (1) in a distributed fashion. In particular, we
will consider greedy mechanisms since they require min-
imum coordination among commodities. In this kind of
mechanism, a path cost φP is defined, and each commod-
ity greedily minimizes the cost it obtains from each of
its paths. This context constitutes an ideal case study
for game theory, and is known as Routing Game in its
lingo [17].

In a routing game like ours, where the traffic gener-
ated by a commodity may be arbitrarily distributed among
paths, commodities are assumed to be constituted of an in-
finite number of agents. These agents control an infinitesi-
mal amount of traffic, and decide along which path to send
their traffic (dPsi

/ds represents then the fraction that have
Psi as their choice for commodity s). If each of these agents
acts selfishly, then the system will be at equilibrium when
no agent may decrease its cost by unilaterally changing its
path decision. This situation constitutes what is known
as a Wardrop Equilibrium (WE) [18], which is formally
defined as follows:

Definition 1. A demand vector is a Wardrop Equilibrium
if for each commodity s = 1 . . . S and for each path Psi

with dPsi
> 0 it holds that φPsi

≤ φPsj
for all Psj ∈ Ps.

It is easy to see that in a WE, and for any given com-
modity s, all paths with dPsi

> 0 have the same cost φPs
,

namely the minimum among all paths of the corresponding
commodity.

Depending on the definition of φP there are roughly
two types of routing games. The first one, known as Bottle-
neck Routing Game [19], defines φP = max

l∈P
{φl(ρl)}, where

φl(ρl) is known as the link cost function. It can be proved
that, under reasonable conditions, the resulting WE mini-
mizes the maximum φl(ρl) over all links. The second type
does not take the maximum φl(ρl) as the path cost φP , but
rather the sum (i.e. φP =

∑
l:l∈P φl(ρl)), and is known as

Congestion Routing Game [17]. It can be proved that,
if φl(ρl) is positive and nondecreasing, the corresponding
WE results in a local minimum of the so-called potential
function:

Φ(d) =

L∑

l=1

∫ ρl

0

φl(x)dx

Given an optimization problem like (1), we may then
find a link cost function φl(ρl) such that the resulting WE

is the optimum demand vector. In this case, let us consider
the following cost function:

φl(ρl) =
∂fl(ρl)

∂ρl
⇒ (2)

Φ(d) =
L∑

l=1

∫ ρl

0

∂fl(x)

∂x
dx =

L∑

l=1

(fl(ρl)− fl(0))

This means that the WE of a congestion routing game
where the link cost φl(ρl) is the derivative of fl(ρl) re-
sults in a local minimum of (1) (note that since fl(0) is
a constant, the optimum d is the same with or without
its addition). However, since φl(ρl) should be positive
and nondecreasing, fl(ρl) should be increasing and con-
vex (meaning that the local minimum is then the unique
global minimum demand vector).

3. No-Regret Algorithms

3.1. Definition and Results

In this section we will present an algorithm that, given
the link cost φl(ρl), converges to the corresponding WE.
As we mentioned in Sec. 1 we will consider so-called no-
regret algorithms. This kind of algorithm is iteratively
applied over time, and as such we shall note the demand
vector at time-step t as dt. In the context of a routing
congestion game, the per-time-step regret incurred by a
commodity is defined as the difference between its average
path cost and the cost of the best fixed path at hindsight.
That is to say, for a total time T , regret for commodity s
is defined as follows:

1

Tds

T∑

t=1

∑

P∈Ps

dtPφ
t
P −

1

T
min
P∈Ps

T∑

t=1

φtP (3)

No-Regret algorithms are those for which the per-time-
step regret may be upper bounded by zero as T goes to
infinity. The authors of [11] proved that if all commodities
applied no-regret algorithms, the resulting demand vector
will converge towards the WE. Let us formally present
this result, for which we will first define an ǫ-Wardrop
Equilibrium (ǫ-WE) [11]2:

Definition 2. A demand vector d is a ǫ-WE if its total
average path cost is within ǫ of the weighted mean cost
of the minimum cost path available to each commodity.
That is to say:

S∑

s=1

∑

P∈Ps

dPφP −
S∑

s=1

ds min
P∈Ps

φP ≤ ǫ
S∑

s=1

ds (4)

2Although [11] refers to ǫ-Nash Equilibria (ǫ-NE), in this context,
with infinite agents, ǫ-NE and ǫ-WE are equivalent.
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Note that, since φP ≥ 0, a 0-WE is simply a normal
WE. Let us define as Tǫ the number of time steps required
to bound (3) by ǫ. We may now formally present the
convergence result as obtained in [11]:

Theorem 1. For a link-cost function φl(ρl) with maxi-
mum derivative equal to δ, for all but a ǫ′ fraction of steps

up to time Tǫ, d
t is a ǫ′-WE, where ǫ = Ω

(
ǫ′4

δ|E|4+δ2|V |2

)
.

Moreover, Tǫ depends quadratically on δ.

In the theorem above, |E| and |V | are the number of
edges and vertices in the network respectively, and Ω(·)
indicates the big omega notation. Intuitively, this theorem
means that for most time steps up to Tǫ (i.e. choosing
a small ǫ′) the instantaneous demand vector dt is very
near the WE (i.e. with a total average path cost within
ǫ′ of the weighted mean cost of the minimum cost path
available to each commodity, cf. Eq. (4)). Moreover, Tǫ is
not arbitrarily large since ǫ is bounded from below. This
means that the difference between dt and the WE vanishes
with time. However, it should be noted that the bigger the
maximum derivative of φl(ρl), the slower the convergence
speed.

3.2. A No-Regret Algorithm: iAWM

The result presented in the previous subsection is very
general, in the sense that it does not specify any algo-
rithm in particular. Its only requirement is the use of
no-regret algorithms by all OD pairs. In particular, we
will consider the Incrementally Adaptive Weighted Major-
ity (iAWM) algorithm [12], which originated in the context
of online learning [13]. The algorithm does not only obtain
a very good upper bound on the regret, but also presents
the desirable characteristic of not requiring any parame-
ter tuning. The complete pseudo-code for commodity s is
described in Fig. 1.

Each path has a corresponding regret Lt
Psi

that mea-
sures its performance up to time-step t. Depending on
the minimum regret among all ns paths (Lt−1

s ), λts is cal-
culated. This parameter, called the learning rate, con-
trols the speed of the algorithm: the bigger the learning
rate, the more reactive the demand vector adjustment. In
this sense, we shall note as ωt

Psi
the portion of traffic sent

through path Psi at time-step t. The interesting aspect
of iAWM is that, as mentioned above, λts is automatically
tuned. As the regret of the best path increases, the learn-
ing rate decreases accordingly. Regarding the formulae
used to calculate λts and ωt

Psi
, although they may appear

arbitrary at first, they are a dynamic version of the classic
Weighted Majority Algorithm [14]. The interested reader
may consult reference [13] for a very complete overview of
this topic.

Note the presence of the input yts, called outcome, that
is used to update the regret of the paths. Let us define
ŷts =

∑ns

i=1 ω
t
Psi
φtPsi

. It may be proved that for any arbi-
trary sequence of yts of length T , the following inequality

L0
Psi
← 0 ∀i = 1, . . . , ns

for t = 1, . . . ,∞ do

Lt−1
s ← min

i=1,..,ns

Lt−1
Psi

εts ← min
{

1
4 ,
√
2 logns

Lt−1
s

}

λts ←
1

1−εts

W t
s ←

∑ns

i=1(λ
t
s)

−Lt−1
Psi

ωt
Psi
← (λts)

−Lt−1
Psi /W t

s ∀i
Receive the path cost φtPsi

∈ [0, 1] ∀i
Adjust the demand vector: dtPsi

/ds = ωt
Psi
∀i

Receive the outcome yts ∈ [0, 1]
Update the path regret Lt

Psi
← Lt−1

Psi
+ |yts − φ

t
Psi
|

∀i
end for

Figure 1: Incrementally Adaptive Weighted Majority (iAWM) Algo-
rithm

is verified [12]:

T∑

t=1

∣∣ŷts − yts
∣∣− LT

s ≤ (2.83 + o(1))
√
LT
s logns (5)

The outcome yts is a value that we consider as the ob-
jective. In our case, any value smaller than or equal to
all path costs will serve our purposes. Finally, note that
the path costs should be in the interval [0, 1]. We may
easily address this issue by using the alternative path cost
φ̂tPsi

= φtPsi
/max
P∈Ps

φtP . Note that a routing congestion game

that uses φ̂tPsi
instead of the original φtPsi

still has the
same WE. We will then prove the no-regret property in
this modified game, which will mean convergence to the
WE on the original one.

Theorem 2. The algorithm iAWM using yts = min
i=1,..,N

φ̂tPsi

is no-regret in the context of a congestion routing game.

Proof. We need to prove that (3) is bounded, and that
this bound goes to zero with T . In this case, it may be
written as:

1

T

(
T∑

t=1

ns∑

i=1

dtPsi

ds
φ̂tPsi

− min
i=1,..,ns

T∑

t=1

φ̂tPsi

)
=

1

T

(
T∑

t=1

ns∑

i=1

ωt
Psi
φ̂tPsi

−
T∑

t=1

(yts − y
t
s)− min

i=1,..,ns

T∑

t=1

φ̂tPsi

)
=

1

T

(
T∑

t=1

(
ŷts − y

t
s

)
− min

i=1,..,ns

T∑

t=1

(
φ̂tPsi

− yts

))
=

1

T

(
T∑

t=1

∣∣ŷts − yts
∣∣− min

i=1,..,ns

T∑

t=1

∣∣∣φ̂tPsi
− yts

∣∣∣
)

=

1

T

(
T∑

t=1

∣∣ŷts − yts
∣∣− LT

s

)
≤

1

T
(2.83 + o(1))

√
LT
s log ns ≤

4



1

T
(2.83 + o(1))

√
T logns →

T
0

Where in the last step we have used the fact that both
yts and φ̂tPsi

belong to [0, 1], and thus their accumulated

absolute difference is never more than T (i.e. LT
s ≤ T ).

As mentioned above, it is important that yts ≤ φ̂tPsi
∀i =

1, .., ns. This condition allows us to take the absolute value
in the fourth step. Using yts = min

i=1,..,ns

φ̂tPsi
means that

when the algorithm converges the regret of the best path
does not increase. This fact will prove useful, as we will
discuss later, when the algorithm is used with real, time-
changing demands.

4. Learning the Delay Function

So far, we have shown that commodities that apply
iAWM in a congestion game with a link cost φl(ρl) equal to
the derivative of the mean queue size fl(ρl) will converge
to the minimum total mean delay demand vector. We
now address the problem of obtaining a good estimation
of φl(ρl) = f ′

l (ρl) from previous measurements on queue
size and load. Actually, since it is the observable quantity,
we shall first estimate fl(ρl) and then simply derivate this
estimation. For the sake of clarity, and since the procedure
is the same for every link, in this section we shall omit the
subindex l.

Assume we have a set of N measurements {(ρ1, Y1)
. . . (ρN , YN )} (also called training set), and assume that
the response variable Y (the measured mean queue size) is
related to the covariate ρ (the mean load) by the following
equation:

Yi = f(ρi) + ǫi i = 1, . . . , n (6)

The measurement error ǫi is a random variable such
that E{ǫi} = 0 and Var{ǫi} = σi < ∞. The Weighted
Least Squares (WLS) problem consists in finding the func-

tion f̂(ρ) that minimizes the weighted sum of quadratic

errors, assuming that f̂(ρ) belongs to a given family of
functions F :

min
f

N∑

i=1

wi (Yi − f(ρi))
2

s.t. f ∈ F (7)

where the weightwi ≥ 0 represents the relative importance
of measurement point i with respect to the rest of the
measurements in the training set.

The following subsections present two different meth-
ods to solve (7), and differ mainly on the assumed F . We
will start with the most general case, and based on the
results obtained by it, derive the other method. How to
assign the weights wi will be discussed after that. We shall
finish the section by presenting an example.

4.1. Convex Nonparametric Weighted Least Squares

In this subsection we present a method that keeps the
assumptions on f̂(ρ) to the minimum. Regarding its shape,

we have only two necessary assumptions. Firstly, f̂(ρ)
should be non-decreasing, since more load may never mean
less queue size. Secondly, f̂(ρ) should be convex in order
to guarantee the existence and uniqueness of the optimum
demand vector, and that this optimum is also the WE.

We then consider F as the family of continuous, mo-
notonous increasing and convex functions. We shall call
Problem (7) with such F Convex Nonparametric Weighted
Least Squares (CNWLS), a variation of the original un-
weighted Convex Nonparametric Least Squares (CNLS) [15].
The size of F makes this problem very difficult to solve in
such general form. Consider instead the following alterna-
tive family of piecewise linear functions G1:

G1(P ) =

{
g : R→ R | g(ρ) = max

i=1,...,N
αi + βiρ;

βi ≥ 0 ∀i = 1, . . . , N ;

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , N

}

It is clear that G1(P ) ⊆ F for all P = {ρi}i=1,..,N . More-
over, consider the following theorem:

Theorem 3. Let s2f be the minimum of problem (7). Let

s2g1 be also the minimum of problem (7), except that we
substitute the constraint by f ∈ G1(P ). Then s2f = s2g1.

Proof. The proof is exactly the same as in the original
CNLS [15].

This result allows us to transform the infinite dimen-
sional problem (7) into the following standard finite di-
mensional Quadratic Programming (QP) problem:

min
ǫ,α,β

N∑

i=1

wiǫ
2
i (8)

subject to Yi = αi + βiρi + ǫi ∀i = 1, . . . , N

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , N

βi ≥ 0 ∀i = 1, . . . , N

Although each observation has its own associated pair
(αi, βi), as we shall illustrate later and already presented
in the original CNLS, the actual number of significantly
different values (which we shall note N∗) generally results
in a small fraction of N . However, note that there are
a total of 3N variables and 2N + N(N − 1) constraints.
In particular, the second set of constraints, which are the
key to enforce the convexity of f̂(ρ), is quadratic in the
number of observations, which will represent a problem as
their number increases.
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Starting with an initial partition P
(0)
1 . . . P

(0)
k

for l = 0, . . . , lmax do

(αj , βj)
(l+1) ← argmin

βj≥0;αj

∑

i∈P
(l)
j

wi (Yi − αj − ρiβj)
2

P
(l+1)
j contains i if j = argmax

s=1...k
{α

(l+1)
s + ρiβ

(l+1)
s }

Finish if P
(l+1)
j is equal to P

(l)
j ∀j = 1 . . . k

end for

Figure 2: Convex Piecewise-Linear Fitting (CPLF) Heuristic

4.2. Convex Piecewise-Linear Fitting

We have seen that problem (7) with the biggest pos-
sible family F may be solved by means of a QP prob-
lem. The resulting solution f̂(ρ) is a piecewise function,
where the partition of the linear segments is not fixed a
priori; i.e. the number and location of the segments are en-
dogenously determined to minimize the weighted squared
residual. However, the resulting QP problem presents scal-
ability issues as the number of observations increases. In
this subsection we will try to solve this issue by fixing the
number of segments to an arbitrary k, thus considering the
following family of functions:

G2 =

{
g : R→ R | g(ρ) = max

j=1,...,k
αj + βjρ;

βj ≥ 0 ∀j = 1, . . . , k

}

Substituting F by G2 in (7) results in the problem
known as Convex Piecewise-Linear Fitting (CPLF). If k
is bigger or equal than N∗ (cf. previous subsection), then
the optimum for CPLF and CNWLS will be the same.
Considering that N∗ is generally a small fraction of N , the
possibility of solving the former instead of the latter seems
interesting. Unfortunately, CPLF is not globally convex,
meaning that, contrary to CNWLS, an exact solution can-
not be found. The authors of [16] present an heuristic
that approximately solves the unweighted version of the
resulting problem, which may be easily adapted to solve
the weighted one.

The algorithm is relatively simple, and it alternates
between partitioning the measurements and performing a
constrained (βj ≥ 0) linear WLS fitting to update the

(αj , βj) pairs. Let P
(l)
j for j = 1 . . . k be a partition of

the measurements indices at iteration l, so that
⋃
P

(l)
j =

{1 . . .N} and P
(l)
j1

⋂
P

(l)
j2

= ∅. The heuristic is described
in Fig. 2.

During the iterations, certain partitions may be emp-
tied. In such case, their (αj , βj) should be eliminated.
This means that the input k actually indicates the maxi-
mum number of pairs in the solution. Regarding complex-
ity, the core of the iteration, solving a constrained linear

Starting with the initial weights w
(0)
i = 1 ∀i = 1..N

for l = 0, . . . , lmax do

Solve (7) with w
(l)
i to compute (αj , βj)

(l+1), result-

ing in the regression function f̂ (l+1)(ρ)

Update w
(l+1)
i as the inverse of

∣∣∣f̂ (l+1)(ρi)− Yi

∣∣∣
Finish if convergence is reached

end for

Figure 3: Iteratively Reweighted Least Squares Algorithm

WLS, is a much simpler problem than CNWLS. It is still a
QP problem, but the number of variables and restrictions
are now 3k and k respectively. Finally, trying different

random initial partitions P
(0)
1 . . . P

(0)
k and keeping the best

solution generally results in a relatively precise estimation.

4.3. Choosing the Weights

In this subsection we discuss a possible way of choos-
ing the values of wi in (7). Since they are the result of a
process whose characteristics may change over time, mea-
surements present heteroscedasticity and important out-
liers. We will then set the weights so that (7) results in
the Least Absolute Deviations problem (i.e. minimize the
sum of the absolute, instead of the squared, errors), which
is known to be more robust to these problems. The clas-
sic way of calculating such weights is to use the Iteratively
Reweighted Least Squares [20] described in Fig. 3.

There are several possible criteria to decide when con-
vergence is reached in the above algorithm. In our par-
ticular case, we stop if the ratio in absolute mean error
between two consecutive iterations is more than 0.95. To
avoid numerical problems, as suggested in [20], if at any
given iteration an error is less than 10−5 the correspond-
ing weight should be set to 105. Anyway, note that the
algorithm requires a solution of (7) at each iteration. This
does not represent a problem for CPLF, although, as we
mentioned before, the time required by CNWLS may be
considerable, and applying it several time may result in a
prohibitive amount of time. In this case then, we shall pro-
ceed as follows. We perform an initial simple estimation
f̂ (0)(ρi), and calculate the corresponding weight as:

wi =
1∣∣∣f̂ (0)(ρi)− Yi

∣∣∣
(9)

As the initial f̂ (0)(ρi) we used the m-nearest neighbors
algorithm (with m = 10), which simply estimates f(ρ) as
the median of the m measurements Yi corresponding to
the ρi’s nearest to ρ. In this way, we seek to find a curve
that fits the bulk of the data, and minimize the effect of
outliers. Moreover, convergence is not guaranteed for the
reweighting algorithm. We deal with this situation (which
may be detected by checking if the total absolute error has
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Figure 4: An example of a regression for the two methods

increased from one iteration to the next) by falling back
to these default weights.

4.4. A Regression Example

We finish this section by presenting a typical regres-
sion. To obtain the measurements we injected a 72 hour
long packet trace (obtained from [21]) to a simple queue
emulator we developed. In the absence of information we
assumed a relatively big buffer size of 100MB. For each
measurement, we took the mean load and queue size in a
60 second period.

The resulting regression function for the two methods
using N = 720 observations may be seen in Fig. 4(a) (for
CPLF we used k = 10). We may verify that CNWLS ob-
tains an approximative function that represents more pre-
cisely the measurements than CPLF. In particular, on ρ
between 0.8MB/s and 12.5MB/s we may appreciate that
it follows more closely the bulk of data. The same hap-
pens at the lower values of ρ. Although not included due
to space limitations, we have conducted a study that con-
firms that CNWLS is more precise than CPLF. In fact,
after k ≈ 5 the precision of CPLF does not increase, and
is approximately half that obtained by CNWLS. However,
as we shall see in the next section, the difference between
them in terms of delay is not as significant. In terms
of computation time, for a training set size bigger than
N ≈ 500 CNWLS is significantly slower than CPLF. The
interested reader may consult the complete study at [22].

Figure 4(b) shows the estimation of the derivative φ̂(ρ)
for the two methods. It should be noted that the result-
ing estimation for both methods becomes constant after,
at the latest, no more observations are available. This as-
pect, which is due to the shape of the regression function,
could be problematic and shall be further discussed later.
Moreover, in Fig. 5 we show the pairs (αj , βj) in the plane.
Regarding CNWLS, we verify that the number of signifi-
cantly different pairs is a small fraction of N (in this case
N∗ = 14). A very simple clustering algorithm may be used
to estimate the final set of pairs. Concerning CPLF, the
final number of pairs was reduced from 10 to 3.

Another important aspect is that, since f̂(ρ) is esti-

mated as a piecewise linear function, the estimated φ̂(ρ)
is piecewise constant. As we mentioned in Sec. 3.1, the
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Figure 5: The (αj , βj) pairs in the plane

convergence time of the no-regret algorithms depends on
the maximum derivative of φ(ρ), which for our approxima-
tion is unbounded3. To address this issue we took a very
simple approach, and approximate this piecewise constant
function by a continuous piecewise linear one. The idea is
the following. The piecewise constant function φ̂(ρ) may
be characterized by the intervals in which its value is con-
stant, and the corresponding value. If we have N∗ pairs,
we will have N∗ of these intervals. We will assume that
the first of these intervals starts at 0 and the last ends at
the last available observation in the training set. Let us
note the center of these intervals as ρj , where we will as-
sume that ρj1 < ρj2 ∀j1 < j2. If we have to estimate the
cost at a load ρ between ρj and ρj+1, then our continuous
estimation will be:

φ̂∗(ρ) =
ρj+1 − ρ

ρj+1 − ρj
φ̂(ρj) +

ρ− ρj
ρj+1 − ρj

φ̂(ρj+1) (10)

If we have to estimate the cost for ρ < ρ1, we will
then assume that there is a ρ0 = 0 and that its cost is
φ̂(ρ0) = 0. If we are on the other end and have to estimate

the cost for ρ > ρN∗ , we will simply return φ̂(ρN∗). To
characterize our continuous approximation we then require
only the interval centers {ρj}j=1,..,N∗ and their associated

cost φ̂(ρj). To clarify the explanation, we included in Fig.
6 this continuous approximation.

5. Flow-Level Simulations

In this section we will present several flow-level simula-
tions that will help us gain insight into the framework. We
will first analyze the performance of iAWM as it faces un-
foreseen and abrupt changes in the traffic demand. This
will justify the final version of the load-balancing algo-
rithm. Another aspect that we shall analyze is the result-
ing performance of the framework when compared with
other load-balancing mechanisms. We are particularly in-
terested in the gain in terms of total delay that we may

3This is not a particular characteristic of no-regret algorithms,
since all distributed optimization methods require a finite derivative
to converge.
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achieve by using our regression over simplistic models such
as the M/M/1. We will also try to answer the important
question of how often we need to update the regression
cost function φ̂(ρ).

As the reference topology we used Abilene [23]. This
network consists of 12 nodes and 15 bidirectional links all
with the same capacity. The topology comes as an exam-
ple in the TOTEM toolbox [24] and we used the traffic
demands obtained from [25], which consists of 6 months
of traffic matrices collected every 5 minutes via Netflow.
Paths were constructed as discussed in [26]. We will as-

sume the same f̂l(ρl) for all links in the network, namely
the one obtained in Sec. 4.4 and shown in Fig. 6.

5.1. Reactivity of iAWM

In this subsection we shall analyze the temporal per-
formance of iAWM. We are particularly interested in its
behavior as it faces abrupt changes in the traffic demand.
We will then consider 200 TMs from dataset X06 in [25],
whose main characteristic is the anomalous increase of the
traffic demand for two commodities. The simulation will
be performed as follows. The TMs are fed to the mecha-
nism in consecutive temporal order. The demand vector d
is initiated at an arbitrary value d0, which will be updated
using iAWM (cf. Fig. 1) as new link load measurements
arrive. We will assume that each OD pair receives these
measurements every minute, meaning that for each new
TM the OD pairs will perform five updates of the portions
of traffic sent through each of its paths. We will then cal-
culate the total mean delay (D(d)) corresponding to each
of these minutes. As a reference, we also computed the
optimum value of D(d) for every TM on the dataset.

In Fig. 7(a) we show the results corresponding to this
simulation. Note how iAWM rapidly converges to the op-
timum, and even when at t = 200 the first anomaly starts,
there is only a small difference between the obtained de-
lay and the optimum. However, the behavior is quite the
opposite for the second anomaly, which starts at t ≈ 400.
In this case, the overshoot is very important, and the con-
vergence time is more than 100 minutes (or iterations in
our case).

The reason behind this slow convergence is relatively
simple. At the moment of the anomaly, for the commodity
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Figure 7: The total mean delay as a function of time for the two
load-balancing mechanisms.

in question, the path through which some of the traffic is
routed at optimality has a very bad history (i.e. a very
big Lt

Psi
). This means that for iAWM, this path has to be

the cheapest for several iterations to revert its bad image
and start being able to route traffic. When an anomaly
occurs, conditions severely change and history should not
be so relevant. If we consider that we are in such a situa-
tion, we could for instance completely ignore history and
restart iAWM by setting Lt

Psi
= 0 ∀i for the commodity

in question.
Regarding the decision of restarting iAWM, one may

imagine several possibilities. In particular, we will con-
sider that if |yts − ŷ

t
s| is abnormally big, it constitutes a

“suspicious” situation. By abnormally big, we mean that
this difference exceeds the mean in previous iterations by
a certain threshold L̂th

s ; in particular, we used L̂th
s = 0.1∀s

(remember that yts and ŷts are in the interval [0, 1]). Such
a situation should indicate to us that the current situation
does not correspond to what we have seen so far. How-
ever, it could also be due to noisy measurements. We will
then require that this “suspicious” situation is repeated a
certain amount mth

s of consecutive times (in our case we
used mth

s = 5 ∀s). The complete pseudo-code is described
in Fig. 8. The results obtained with this new algorithm
may be seen in Fig. 7(b). Note how the overshoot has now
disappeared almost completely.

Adapting on-line learning algorithms to non-stationary
environments, as we have just discussed for iAWM, is an
active research area. The alternative to restarting, is the
more “continuous” framework of tracking the best expert [27].
The objective is the same as in the no-regret framework,
except that we consider that time is divided into segments,
and that each of them has a best path. Performance of the
algorithm is then compared to the performance obtained
by this sequence of paths. Although it would be interest-
ing to adapt such algorithms to be used for load-balancing,
several aspects remain to be addressed. Firstly, conver-
gence to the Wardrop Equilibrium has not been proved.
Secondly, these algorithms are not self-configured which,
as we discussed, is a very important property.
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Initialize τ0s ← 0, L̂0
s ← 0 and m0

s ← 0
for t = 1, . . . ,∞ do

Perform a normal iteration of iAWM.
τ ts ← τ t−1

s + 1

L̂t
s ← L̂t−1

s + |yts − ŷ
t
s|

if |yts − ŷ
t
s| > L̂t

s/τ
t
s + L̂th

s then

mt
s ← mt−1

s + 1
else

mt
s ← 0

end if

if mt
s > mth

s then

Lt
Psi
← 0 ∀i = 1, .., ns

τ ts ← 0, L̂t
s ← 0 and mt

s ← 0
end if

end for

Figure 8: Incrementally Adaptive Weighted Majority with Restart
(iAWM-R) Algorithm

5.2. Assessing the Performance Gain

In addition to the φ̂(ρ) we estimated through measure-
ments, in Fig. 6 we compare it with the M/M/1 model. If
we assume this model instead of the real fl(ρl) we would
incur an increase of the total mean delay (D(d)) with re-
spect to the optimum that may be important. To quantify
this increase more precisely, we will consider 672 traffic de-
mands spanning a complete week from dataset X01 in [25].
For each of these traffic demands, we apply iAWM-R using
the M/M/1 model and the φ̂∗l (ρl) resulting from CNWLS
and CPLF, and measure the difference in D(d) assuming

the f̂l(ρl) obtained by CNWLS as the true fl(ρl). We
shall note these schemes as MinD (as in Minimum Delay),
where the cost function will be indicated between paren-
thesis (e.g. MinD(CNWLS)).

For the sake of completeness, we will also make the
comparison in terms of the link utilization (ul = ρl/cl).
A link with a ul close to one is operating near its capac-
ity, and in order to be able to support sudden increases
in traffic and link/node failures, network operators prefer
to keep link utilization relatively low. It would not make
much sense to minimize the total mean delay if it meant
highly utilized links. As a reference for the comparison we
will use the results obtained by a greedy load-balancing
mechanism whose path cost is the maximum link utiliza-
tion (φP = max

l∈P
{ul}), which converges to a demand vec-

tor that minimizes the maximum utilization over all links
[7, 8]. This scheme shall be noted MinU (as in Minimum
Utilization). We will measure two network-wide perfor-
mance indicators: the 90% quantile and maximum link
utilization.

In Fig. 9(a) we can see the boxplot of the results on
the total mean delay. In particular, for each traffic demand
we calculated D(d) for the considered schemes: MinU and

MinU MinD (CPLF) MinD (M/M/1)
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Figure 9: Increase in Total Mean Delay in the Abilene network

MinD for the three possible φ̂∗(ρ). We present the di-
vision between the value obtained by each scheme and
MinD(CNWLS).

We can see that the total mean delay obtained by
MinD(M/M/1) is generally between 5 and 35% bigger than
the one obtained by MinD(CNWLS). This difference may
actually go as high as a 80%, and in some cases even more
(although not shown for the sake of clarity of the graph,
the actual maximum was 560%). If we look carefully at
Fig. 6 we can see that this difference originates in the fact
that the M/M/1 model underestimates φl(ρl). In par-
ticular, the abrupt increase in queue size that occurs at
ρ ≈ 12MB/s, is also present in the M/M/1 estimation,
but at a much higher load of ρ ≈ 17.5MB/s. This leads
iAWM-R to “believe” that links are operating at a low
queueing delay load, when it is actually the opposite.

Regarding MinD(CPLF), we may verify that the loss
in precision does not seriously impact the obtained per-
formance. Except for some isolated cases, the increase
in total mean delay is between 0% and 5%. On the other
hand, the difference in total mean delay obtained by MinU
is similar to the one obtained by MinD(M/M/1), gener-
ally with an increase between 10 and 30% with respect
to MinD(CNWLS), with a maximum of 60%. Although
MinU tries to avoid loaded links (thus obtaining slightly
better results than MinD(M/M/1)), it is so conservative
in its objective that it ends up unnecessarily increasing the
total mean delay.

As far as the link utilization is concerned, we calculated
the results obtained by all the mechanisms, and present
the difference between the reference (MinU) and the other
schemes, which we show in Fig. 10. It should be noted
that the results for all versions of MinD are very similar,
in agreement with what we mentioned in Sec. 1. Quite
surprisingly, the 90% quantile is bigger in MinU. The ar-
gument remains the same as before. MinU is so conserva-
tive in its objective, that, although it minimizes the max-
imum link utilization (where the difference with MinD is
always less than 10%), it overlooks the less loaded links.
These results confirm that minimizing D(d) is a good ob-
jective, since it does not neglect links utilization. On the
contrary, although it obtains a somewhat bigger maximum
utilization than MinU, the rest of the links are more lightly
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Figure 10: Difference in link utilization between MinU and MinD in
the Abilene network

loaded.

5.3. Temporal Behavior

A natural question that arises in our framework is how
often links need to be characterized. In other words, how
long can φ̂∗l (ρl) be used as a good approximation of φl(ρl)?
Although more frequent updates of the links characteriza-
tion will mean a more optimal or fine-tuned network, it will
also mean greater computational expenses. This tradeoff
between the optimality of the network and computational
burden should be addressed.

Here we will give a partial answer to this question,
and, as a reference, provide a lower bound to the validity
of the link characterization used in the previous subsec-
tion (which we will note as (αi, βi)PREV). The idea is the
following. From the same 72 hours long packet trace used
before, we take the same 12 hours worth of measurements,
but from the next day. We will note the characterization
resulting from this new training set as (αi, βi)NEXT. We
now assume that the correct fl(ρl) for all links in Abilene

is f̂l(ρl)NEXT, and measure the increase in the total mean
delay if we were to apply the iAWM-R algorithm using
φ̂∗l (ρl)PREV instead.

In Fig. 9(b) we show the results obtained in this case.
We can see that although in some few cases the increase
due to the misspecification may be as much as 30%, it is
generally under 13%. These results are to be compared
to those obtained by MinD(M/M/1), which obtained an
excess in the total mean delay of more than 10% in half of
the cases, and a maximum difference of more than 80%.

Our partial answer is then that the characterization
of a link obtained from the measurements of any given
day, is also valid the next day. This validates our implicit
assumption that φl(ρl) remains relatively stable over time.
Another positive conclusion is that regression need not be
performed very frequently. It should be noted that the
trace used in this study contained only working days. Our
conjecture is that the characterization obtained from any
working day holds for the rest of the working days in the
same week. The traffic mix generally changes on weekends,
which will probably result in a different fl(ρl) than that of
the working days, thus requiring its own characterization.

w

3 4

2

1

1

1 - w
1

q

1
2

3

5

4 6

Figure 11: The network for the packet-level simulations.

6. Packet-Level Simulations

In this section we will consider a relatively simple ex-
ample we implemented in ns-2 [28] that will verify the cor-
rect performance of iAWM-R in the presence of delayed
and noisy measurements. It is important to highlight that
in all the simulations load balancing is performed at the
granularity of flows (i.e. once a flow is routed through a
path, it stays there throughout its lifetime) and is random;
i.e. commodity s will route new incoming flows through
path Psi with probability ωt

Psi
(cf. Sec. 3.2).

The network may be seen in Fig. 11. Its six “core”
links have a capacity of 125kB/s, while the “access” ones
250kB/s. There are a total of four commodities, all with
the same destination node q, except for commodity 3,
whose destination node is origin 4. Moreover, only com-
modity 1 has more than one path available. We will note
ω1 the portion of traffic of commodity 1 routed through
the upper path. The traffic in the network is a mixture of
elastic and streaming flows. The elastic ones (whose size is
exponentially distributed with mean 20 kB) are generated
as a Poisson process of intensity λe. The streaming traf-
fic is constituted of Constant Bit Rate flows (at a bitrate
of 10 kbps and an exponentially distributed duration with
mean 20 s) also arriving as a Poisson process (of intensity
λs). The corresponding intensities were calculated so that
streaming represents 10% of the total traffic.

The training set has been constructed by fixing ω1 at
0.5 and varying the demand generated by each commodity.
The training set and the corresponding regression for links
2, 3, 5 and 6 may be seen in Fig. 12. Note that links 2,
3 and 5 have almost the same characterization. On the
contrary, link 6 presents little or no link delay. This is
because traffic on this link is already shaped by the queue
of link 5.

Links with little or no delay clearly represent a prob-
lem for our framework. This small delay may be due to
the traffic characteristics as in this case, or simply because
the link has a small buffer. Such links will have a constant
insignificant cost, and the converged demand vector could
overload them. This could also be the case for a charac-
terization resulting from an incomplete training set. If the
maximum measured load is relatively small, as observed
in Sec. 4.4, the resulting cost function φ̂∗l (ρl) will become
a small constant.

To illustrate the above mentioned problems, we have
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Figure 12: The training sets and the corresponding regressions
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Figure 13: ω1 as a function of time for two link characterizations

conducted two simulations. In both of them, the total traf-
fic intensity for commodities 2, 3 and 4 is 50 kB/s through-
out the simulation, while for commodity 1 it changes from
12.5 kB/s to 75kB/s at t = 5000 s of the simulation (in a
total of 20000 seconds). The difference between the two
simulations lies in the characterization used for link 5. In
the first simulation, we used the complete characteriza-
tion, as it appears in Fig. 12(a), while in the second one
we have removed the (αj , βj) corresponding to the biggest
βj . This means that after ρ ≈ 75 kB/s the link cost func-
tion becomes constant. In Fig. 13 we show the evolution
of ω1 over time for the two simulations. Notice how the ω1

corresponding to the complete link characterization con-
verges to a value very near the optimum we calculated off-
line (which is marked by a horizontal line). On the other
hand, the incomplete link characterization makes iAWM-
R believe that link 5 is cheaper than it really is, resulting
in ω1 converging to 0.2. In the first case, it is interesting to
verify how the restart in iAWM-R is only applied when the
abrupt change in demand occurs. For the second training
set, the difference in cost is not enough to trigger a restart.

In Fig. 14 we present the load for all “core” links on
the simulation corresponding to the incomplete link char-
acterization. Naturally, links 5 and 6 are overloaded in
the second part of the simulation. It is interesting to no-
tice how the total demand generated by commodity 1 (ap-
proximately 120kB/s from Fig. 14) exceeds the traffic in-
tensity of 75 kB/s. This is because at overload, due to
retransmissions, the mean traffic generated by each TCP
flow exceeds the 20 kB. This means that, although the im-
plicit assumption that demands do not depend on network
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Figure 14: The links load as a function of time for the incomplete
link characterization

condition or routing is not fulfilled in this simulation, the
load-balancing algorithm still converges. Another inter-
esting aspect to note is that although the level of noise
in the load measurements is important, its impact on the
converge of ω1 is very small.

We will now present a possible solution to the above
problems. The idea is to avoid overloaded links due to
unobserved link loads or little mean queue size. We pro-
pose to substitute φ̂∗l (ρl) by a certain function ψl(ρl) for
ρl > ρmax

l , where ψ(ρl) has the following characteristics:

• So that the resulting cost function is still continuous,
ψl(ρ

max
l ) = φ̂∗l (ρ

max
l ).

• ψ(ρl) should be increasing on ρl.

• As load exceeds ρmax
l , all links should have a big and

similar cost. Else, the algorithm would still prefer to
overload the cheapest links.

Let us temporarily define ψl(ρl) as:

ψl(ρl) = eblρl/cl − 1 (11)

with bl =
cl
ρmax
l

log
(
1 + φ̂∗l (ρ

max
l )

)

We suggest an exponential because, in our experience,
it is a rough approximation of the shape of the φ̂∗l (ρl)
obtained from measurements. Function (11) goes through

the origin and at ρmax
l is exactly φ̂∗l (ρ

max
l ). For each link,

ψl(ρl) then fulfills the two first characteristics of the above
list. To fulfill the third one, we will take the maximum bl
among all links (bmax), and use the resulting function as
the definitive substitute cost ψl(ρl). The final link cost is
then:

φl(ρl) =

{
φ̂∗l (ρl) if ρl < ρmax

l ,

ebmaxρl/cl − ebmaxρ
max
l /cl + φ̂∗l (ρ

max
l ) else

(12)
As the threshold ρmax

l we could use the biggest ρl in
the training set, a certain fraction of cl, or the minimum
of both. There are many possibilities. In particular, in
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Figure 15: ω1 as a function of time for two link characterizations
using the corrective function
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Figure 16: The links load as a function of time for the incomplete
link characterization using the corrective function ψl(ρl)

our simulations we used the last option, with a fraction
of 80%. It could happen that the link capacity was not
known, in which case we should then substitute it by a
load that we consider critical for the operation of the link.
The exact value of cl in (12) is not so important and an
order-of-magnitude value should be enough. Finally, note
that as long as the load at all links is smaller than the cor-
responding ρmax

l , the presence of ψl(ρl) has no influence.
We will now repeat the two previous simulations, but

using the corrected link cost function (12). In Fig. 15(a) we
may see that the influence of ψl(ρl) when using the com-
plete characterization is negligible. The differences with
Fig. 13(a) are due to a relatively incomplete training set
on links 1 and 4. In Fig. 15(b) we may see how the presence
of ψl(ρl) when using the incomplete link characterization
plays a fundamental role in the convergence of ω1. In Fig.
16 we may verify that no link is overloaded now.

6.1. Implementation Issues

The application of our framework in a real-world net-
work is relatively simple. Once all links have been charac-
terized, each OD pair receives ρl from the links it uses (for
this purpose, a Traffic Engineering enabled routing pro-
tocol such as OSPF-TE [29] may be used), calculates its
paths’ cost with (12), and applies iAWM-R to update the
portion of traffic routed through each of them (i.e. one it-
eration in Fig. 8). This process is repeated regularly every

few seconds. This update period should be long enough
so that the quality of the measurements obtained is rea-
sonable, but not too long to avoid unresponsiveness (in
particular, we suggest 60 sec).

Regarding the learning phase (i.e. gathering the train-
ing set and performing the regression) we envisage several
possibilities, differing in the degree of distribution of the
resulting architecture. One possibility is that a central
entity gathers the measurements, performs the regression
and communicates the parameters obtained to all ingress
routers (we assume that these routers, through which com-
modities inject traffic to the network, distribute this traf-
fic). This first possibility presents the advantage that the
new functionalities required on the router are minimal.
However, as all centralized schemes, it may not be possi-
ble to implement in some network scenarios, and handling
the failure of this central entity could be very complicated.
An alternative is that links (or rather, the router at the
origin of the link) perform the regression. Links keep the
mean queue size measurements for themselves, perform the
regression and communicate the result to ingress routers.
The regression could be done once a day, in periods of low
intensity (i.e. the night) so that normal operation is not
affected. Recall that, as discussed in Sec. 5.3, frequent
updates in the regression function are not necessary.

An important aspect that should be analyzed is which
measurements to keep for the training set. It is clear
that newer measurements should be given priority over
older ones. However, those corresponding to bigger loads
will give us more information on φl(ρl) (and are more
rare). A possible structure for the measurements database
could be to partition the load into intervals, and keep the
same amount of measurements per interval, each of which
will work as a FIFO (first-in-first-out) queue. As men-
tioned before, those intervals corresponding to bigger loads
should be smaller. How to assign this intervals exactly and
how many measurements to use is left for future work.

With respect to the final form of φ̂∗l (ρl) (cf. (12)) the
main issue is finding the maximum bl among all links.
In the centralized architecture we described above, the
problem is straightforward, since the central entity has all
the information, and it need only communicate this value
along with the links’ characterization to all routers. In
the distributed scenario it is somewhat more difficult. If
routers have information of only some of the links, they
cannot calculate bmax and have to communicate with the
rest to find it. Fortunately, distributed and efficient algo-
rithms to do this exist [30].

Regarding the choice of the regression method, we have
shown in Sec. 5.2 that the difference in the obtained to-
tal mean delay between them is generally small, except
in some rare cases. However, whether the extra compu-
tational burden incurred by CNWLS is worth the perfor-
mance improvement depends on the given situation. If the
size of the training set we are working with is significant,
or the computation capacity available limited, we could
fall back on CPLF. If not, we recommend using CNWLS.
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Not only does it obtain a better precision, but its solution
does not rely on a heuristic and may be calculated exactly.

7. Related Work

The problem of minimizing the total mean delay trying
to assume as little as possible on fl(ρl) has been studied
in the past. For instance, the authors of [31] present a dy-
namic load-balancing method that, differently to our work,
does not assume any model for the mean queue size func-
tion (i.e. this function is now fl(W ), where the argument
is the whole packet input process during the time period).
The load-balancing approach is however relatively simi-
lar, in the sense that, based on the results discussed in
Sec. 2.2, they use a greedy algorithm on the path cost
φP =

∑
l∈P ∂fl/∂ρl. To estimate this derivative in such

general case, they use the so-called Perturbation Analysis,
which requires measuring the moment each packet enters
and leaves the queue of link l.

The first disadvantage of this method is the measure-
ments it requires. At the time of the proposal (late eight-
ies), the assumption that the moment at which each packet
of each link enters and leaves the queue was measurable,
was somewhat reasonable. Nowadays, it simply cannot be
done. In this sense, recent articles (e.g. [32]) propose al-
ternative and simpler methods to estimate

∑
l∈P ∂fl/∂ρl

based on measurements. However, they all share a sec-
ond disadvantage (which at first may seem like the con-
trary): the level of generality of their model. The opti-
mization problem they wish to solve assumes a queueing
delay function that depends solely on ρl (just like ours).
However, their estimation of the derivative does not make
such supposition, but depends on the whole packet pro-
cess. This means that fl depends on many more and un-
known variables than just ρl. Note that since commodities
may only change the portion of traffic sent through each
path, these new variables are not controllable by them.
This may translate into oscillations, as presented in the
original paper [31].

All in all, although our framework does not use the
most general model, it does assume a “controllable” one.
We can then guarantee convergence and stability, and ex-
pect that the mean total delay obtained by the resulting
demand vector is a good approximation of the absolute
minimum. Moreover, the measurements required by our
framework are available in most routers and need not be
extremely precise.

8. Conclusions

In this paper we presented a Dynamic Load-Balancing
(DLB) scheme that converges to the minimum mean end-
to-end queueing delay (D(d) =

∑
l fl(ρl), where fl(ρl) is

the mean queue size) demand vector. The advantage of
our proposal is that we make almost no a priori assumption
on the function fl(ρl), but learn its actual form from past

measurements of mean load and queue size (both read-
ily available in most routers), thus converging to the real
minimum.

Convergence is attained by means of a no-regret al-
gorithm, which had the desirable property of being self-
regulated, thus requiring no speed parameter fine-tuning.
To learn the mean queue size function we presented two
alternative methods: Weighted Constrained Nonparamet-
ric Least Squares (WCNLS) and Convex Piecewise Linear
Fitting (CPLF). Although the first one is more precise, as
the number of available measurements increase, its com-
putational cost could become a problem. The comparison
between our framework and a simplistic model (M/M/1 )
showed that in half of the cases the increase in delay ex-
ceeded 10%, and that it could be more than 100%. In
terms of link utilization, results indicate a very similar
performance between the M/M/1 model and our approx-
imate φl(ρl). They both obtain a somewhat bigger maxi-
mum utilization than the optimum, but distribute the load
among the rest of the links more evenly.

As discussed in Sec. 1, DLB (and TE in general) is usu-
ally defined in terms of a fl(ρl) that is arbitrarily chosen, as
long as it is convex and goes to infinity when load reaches
the link capacity. In terms of link utilization and TCP per-
formance the difference between the different fl(ρl) may
be considered as somewhat unimportant. However, in this
paper we have shown that when the objective is minimiz-
ing queueing delays (the most important performance in-
dicator for real-time traffic, an increasing amount of traffic
nowadays) this choice is crucial, and a misspecification can
result in significant increases of total delay with respect to
the optimum.

A possible improvement to the framework has to do
with the model used when defining fl(ρl). Although, as
we saw in Sec. 4.4, the mean queue size can be reasonably
modeled with such a function in wired mediums, this is
not necessarily true in a wireless medium. Actually, as
discussed for instance in [33], the MAC-layer interactions
between routers play a significant role in determining the
capacity of a link (and thus its queue size). This means
that the f of any given link should include the load of
all neighbor links in its collision domain, and not only
itself. A deeper analysis of this non-local model represents
interesting future work.
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