Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41146
Cómo citar
Título: | Improving electric fraud detection using class imbalance strategies |
Autor: | Di Martino, Matías Decia, Federico Molinelli, Juan Fernández, Alicia |
Tipo: | Ponencia |
Fecha de publicación: | 2012 |
Resumen: | Improving nontechnical loss detection is a huge challenge for electric companies. The great number of clients and the diversity of the different types of fraud makes this a very complex task. In this paper we present a fraud detection strategy based on class imbalance research. An automatic detection tool combining classification strategies is proposed. Individual classifiers such as One Class SVM, Cost Sensitive SVM (CS-SVM), Optimum Path Forest (OPF) and C4.5 Tree, and combination functions are designed taken special care in the data s class imbalance nature. Analysis over consumers historical kWh load profile data from Uruguayan Electric Company (UTE) shows that using combination and balancing techniques improves automatic detection performance. |
EN: | International Conference on Pattern Recognition Applications and Methods (IPRAM 2012) |
Citación: | Di Martino, M, Decia, F, Molinelli, J, Fernández, A. "Improving electric fraud detection using class imbalance strategies" International Conference on Pattern Recognition Applications and Methods. Vilamoura, Portugal, 5-8 feb. 2012 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DDMF12.pdf | 665,12 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons