english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/41146 Cómo citar
Título: Improving electric fraud detection using class imbalance strategies
Autor: Di Martino, Matías
Decia, Federico
Molinelli, Juan
Fernández, Alicia
Tipo: Ponencia
Fecha de publicación: 2012
Resumen: Improving nontechnical loss detection is a huge challenge for electric companies. The great number of clients and the diversity of the different types of fraud makes this a very complex task. In this paper we present a fraud detection strategy based on class imbalance research. An automatic detection tool combining classification strategies is proposed. Individual classifiers such as One Class SVM, Cost Sensitive SVM (CS-SVM), Optimum Path Forest (OPF) and C4.5 Tree, and combination functions are designed taken special care in the data s class imbalance nature. Analysis over consumers historical kWh load profile data from Uruguayan Electric Company (UTE) shows that using combination and balancing techniques improves automatic detection performance.
EN: International Conference on Pattern Recognition Applications and Methods (IPRAM 2012)
Citación: Di Martino, M, Decia, F, Molinelli, J, Fernández, A. "Improving electric fraud detection using class imbalance strategies" International Conference on Pattern Recognition Applications and Methods. Vilamoura, Portugal, 5-8 feb. 2012
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
DDMF12.pdf665,12 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons