Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41146
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Di Martino, Matías | es |
dc.contributor.author | Decia, Federico | es |
dc.contributor.author | Molinelli, Juan | es |
dc.contributor.author | Fernández, Alicia | es |
dc.date.accessioned | 2023-11-14T17:04:31Z | - |
dc.date.available | 2023-11-14T17:04:31Z | - |
dc.date.issued | 2012 | es |
dc.date.submitted | 20231114 | es |
dc.identifier.citation | Di Martino, M, Decia, F, Molinelli, J, Fernández, A. "Improving electric fraud detection using class imbalance strategies" International Conference on Pattern Recognition Applications and Methods. Vilamoura, Portugal, 5-8 feb. 2012 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/41146 | - |
dc.description.abstract | Improving nontechnical loss detection is a huge challenge for electric companies. The great number of clients and the diversity of the different types of fraud makes this a very complex task. In this paper we present a fraud detection strategy based on class imbalance research. An automatic detection tool combining classification strategies is proposed. Individual classifiers such as One Class SVM, Cost Sensitive SVM (CS-SVM), Optimum Path Forest (OPF) and C4.5 Tree, and combination functions are designed taken special care in the data s class imbalance nature. Analysis over consumers historical kWh load profile data from Uruguayan Electric Company (UTE) shows that using combination and balancing techniques improves automatic detection performance. | es |
dc.language | en | es |
dc.relation.ispartof | International Conference on Pattern Recognition Applications and Methods (IPRAM 2012) | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.title | Improving electric fraud detection using class imbalance strategies | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DDMF12.pdf | 665,12 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons