english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/41106 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMotta, Ges
dc.contributor.authorOrdentlich, Ees
dc.contributor.authorRamírez Paulino, Ignacioes
dc.contributor.authorSeroussi, Gadieles
dc.contributor.authorWeinberger, Marceloes
dc.date.accessioned2023-11-14T17:04:18Z-
dc.date.available2023-11-14T17:04:18Z-
dc.date.issued2011es
dc.date.submitted20231114es
dc.identifier.citationG. Motta, E. Ordentlich, I. Ramirez, G. Seroussi and M. J. Weinberger, "The iDUDE Framework for Grayscale Image Denoising" [Preprint] Publicado en: IEEE Transactions on Image Processing, v. 20, no. 1, pp. 1-21. doi: 10.1109/TIP.2010.2053939.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/41106-
dc.description.abstractWe present an extension of the discrete universal denoiser DUDE, specialized for the denoising of grayscale images. The original DUDE is a low-complexity algorithm aimed at recov-ering discrete sequences corrupted by discrete memoryless noise of known statistical characteristics. It is universal, in the sense of asymptotically achieving, without access to any information on the statistics of the clean sequence, the same performance as the best denoiser that does have access to such information. The DUDE, however, is not effective on grayscale images of practical size. The difficulty lies in the fact that one of the DUDE’s key com-ponents is the determination of conditional empirical probability distributions of image samples, given the sample values in their neighborhood. When the alphabet is relatively large (as is the case with grayscale images), even for a small-sized neighborhood, the required distributions would be estimated from a large collection of sparse statistics, resulting in poor estimates that would not enable effective denoising. The present work enhances the basic DUDE scheme by incorporating statistical modeling tools that have proven successful in addressing similar issues in lossless image compression. Instantiations of the enhanced framework, which is referred to as iDUDE, are described for examples of adadditive and nonadditive noise. The resulting denoisers significantly surpass the state of the art in the case of salt and pepper (S P) and M-ary symmetric noise, and perform well for Gaussian noise.es
dc.languageenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectContext-based denoisinges
dc.subjectDiscrete universal de-noiser (DUDE) algorithmes
dc.subjectDiscrete universal denoisinges
dc.subjectGaussian noisees
dc.subjectImage denoisinges
dc.subjectImpulse noisees
dc.titleThe iDUDE framework for grayscale image denoisinges
dc.typePreprintes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señales-
udelar.investigation.groupTratamiento de Imágenes-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MORSW11.pdf2,5 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons