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Abstract—We present an extension of the discrete universal
denoiser DUDE, specialized for the denoising of grayscale images.
The original DUDE is a low-complexity algorithm aimed at recov-
ering discrete sequences corrupted by discrete memoryless noise
of known statistical characteristics. It is universal, in the sense
of asymptotically achieving, without access to any information
on the statistics of the clean sequence, the same performance as
the best denoiser that does have access to such information. The
DUDE, however, is not effective on grayscale images of practical
size. The difficulty lies in the fact that one of the DUDE’s key com-
ponents is the determination of conditional empirical probability
distributions of image samples, given the sample values in their
neighborhood. When the alphabet is relatively large (as is the case
with grayscale images), even for a small-sized neighborhood, the
required distributions would be estimated from a large collection
of sparse statistics, resulting in poor estimates that would not
enable effective denoising. The present work enhances the basic
DUDE scheme by incorporating statistical modeling tools that
have proven successful in addressing similar issues in lossless
image compression. Instantiations of the enhanced framework,
which is referred to as iDUDE, are described for examples of ad-
ditive and nonadditive noise. The resulting denoisers significantly
surpass the state of the art in the case of salt and pepper (S&P)
and� -ary symmetric noise, and perform well for Gaussian noise.

Index Terms—Context-based denoising, discrete universal de-
noiser (DUDE) algorithm, discrete universal denoising, Gaussian
noise, image denoising, impulse noise.

I. INTRODUCTION

T HE discrete universal denoiser (DUDE), introduced in [1]
and [2], aims at recovering a discrete, finite-alphabet se-

quence, after it has been corrupted by a discrete memoryless
noise channel of known statistical characteristics. It is shown in
[2] that the DUDE is universal, in the sense of asymptotically
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achieving, without access to any information on the statistics
of the clean sequence, the same performance as an optimal de-
noiser with access to such information. The denoiser can also
be implemented with low complexity. In [3], the definition of
the DUDE was formally extended to two-dimensionally indexed
data, and an implementation of the scheme for binary images
was shown to outperform other known schemes for denoising
this type of data.

The DUDE algorithm performs two passes over the data. In a
first pass, a conditional probability distribution is determined for
each (noisy) sample given the sample values in a (spatial) neigh-
borhood, or context, by collecting statistics of joint occurrences.
This context model is then used, through a channel inversion op-
eration, for determining conditional probability distributions for
clean samples given each (noisy) context pattern and the sample
value observed at the corresponding location. In a second pass,
a denoising decision is made for each sample based upon this
conditional distribution. The decision is essentially the Bayes
optimal one with respect to the previously mentioned distribu-
tion and a given loss function. A more detailed description of
the DUDE algorithm is given in Section II.

Although the asymptotic results of [2] apply to any finite
alphabet, it was observed in [3] that extending the results to
grayscale images1 (or, in general, to data over large alphabets)
presented significant challenges. The main challenge stems
from the fact that, in a context model over an alphabet of size

, parametrized by the symbol conditional probabilities, and
with a neighborhood of size , the number of free parameters is

(for example, in an 8-bit per pixel image, a rather
small 3 3 neighborhood consisting of the eight samples
closest to a given sample, yields free
parameters). This means that context-conditioned statistics for
estimating these parameters are likely to be sparse and provide
little, if any, information on the structure of the image. This well
known phenomenon is sometimes referred to as the “sparse
context” problem. The theoretical results of [2] indeed show

1These are images with a relatively large dynamic range, e.g., in our exam-
ples, 256 grayscale values, which we will refer to as a large alphabet. For this
image class, the main assumption is that the numerical sample values preserve,
up to quantization, continuity of brightness in the physical world. Most of our
discussion will refer to monochrome grayscale images, although the algorithms
extend by the usual methods to color images. Notice also that we assume a truly
discrete setting: the noisy symbols are discrete, and they are assumed to be-
long to the same finite alphabet as the clean symbols (e.g., we consider discrete
Gaussian noise). Other works in the literature often assume that the noisy sam-
ples are arbitrary real numbers, which provides the denoiser with more informa-
tion than the corresponding quantized and possibly clipped values assumed in
the discrete setting. It can be argued that such continuous information is often
not available in practice, e.g., when denoising a raw digital image acquired by
a digital camera.



that the DUDE’s rate of convergence to optimal performance
depends strongly upon the size of the context model. This con-
vergence rate is determined largely by the degree to which the
law of large numbers has taken hold on random subsequences
of noisy samples occurring in a given context pattern and
having a given underlying clean sample value. Convergence
requires that these subsequences be relatively long, implying
numerous occurrences of each noisy pattern and underlying
clean sample value.

Due to these facts, the original DUDE scheme, as defined in
[2], will not yield meaningful denoising for images of current
or foreseeable practical size over a large (say, 256-symbol)
alphabet. This problem has also been noticed in [4, p. 509],
where the direct application of the DUDE’s tools to model the
necessary conditional probability distributions for grayscale
images is deemed to be “almost hopeless.” Although this
pessimistic assessment appears justified at first sight, we show
that the basic scheme of [2] can be enhanced with image mod-
eling tools, enabling effective implementations of DUDE-style
schemes in grayscale image applications.

A “sparse context” problem very similar to that confronting
the DUDE exists, and has been successfully addressed, in loss-
less image compression (see, e.g., [5], [6], or the survey [7]),
where state of the art algorithms are also based upon the de-
termination of probability distributions of samples of the input
image, conditioned on their contexts.2 In this and other infer-
ence problems the concept is formalized by the notion of model
cost [8], a penalty proportional to the number of free statistical
parameters in the model, which is paid to learn or describe the
estimated model parameters. The principle underlying the tools
developed for lossless image compression is that one should not
impose on the universal algorithm the task of learning properties
of the data which are known a priori. For example, one instance
of the problem is formally studied in [9], where it is shown how
the widely used practice of coding prediction errors (rather than
original samples) can be seen as allowing the statistics of the
data to be learned, effectively, with a much smaller model. The
use of prediction is based upon our prior knowledge of the tar-
geted images being generally smooth, and of the fact that sim-
ilar variations in brightness are likely to occur in regions of the
image with different baseline brightness levels. Explicit or im-
plicit application of these principles has led to some of the best
schemes in lossless image compression [5], [6], which are all
based upon prediction and context modeling.

The foregoing discussion suggests that modeling tools devel-
oped and tested in lossless image compression could be lever-
aged for estimating the distributions required by the DUDE, to-
gether with tools that are specific to the assumptions of the de-
noising application. In this paper, we pursue this strategy, and
show that enhancing the basic DUDE algorithm with such tools
yields powerful and practical denoisers for images corrupted
by a variety of types of noise. We regard the enhanced DUDE
schemes presented in the paper as a framework (referred to as
the iDUDE framework), since what is described is a general ar-
chitecture for a denoising system incorporating the basic DUDE

2In the image compression case, the contexts are causal, whereas for the
DUDE, the contexts are generally noncausal.

principles from [2], namely, the estimation of context-condi-
tioned clean sample probability distributions and the applica-
tion of an optimal Bayes denoising rule based upon the esti-
mated distributions and the given loss function, as well as a set 
of basic assumptions on grayscale images. The framework can 
then be specialized for different noise types or image character-
istics within the broad class of grayscale images, by changing 
the specific embodiments of the different algorithmic modules. 
In particular, knowledge about the noise channel will be incor-
porated in the form of a channel transition matrix describing 
the probability distributions of noisy samples given clean sam-
ples. Some computations will involve the inverse of this ma-
trix (or more generally pseudo-inverses or other methods to es-
timate distributions of clean samples from distributions of noisy 
ones). Additionally, as will be described later on, the framework 
will sometimes rely on a simple prefilter for the noise channel 
of interest. Thus, by selecting the appropriate matrix, adapting 
the corresponding inversion methods, and choosing a matching 
prefilter, the iDUDE framework can be customized to different 
noise types. On the other hand, prior knowledge about grayscale 
images, and on the interaction between the targeted channel and 
the image type will generally be incorporated in the specific 
design of the context model, including a context aggregation 
strategy and choices of conventional image predictors used as 
part of that strategy. We illustrate this flexibility by describing 
in detail iDUDE instantiations for three popular noise channels, 
and applying the resulting denoisers to a variety of grayscale 
image types. These instantiations are intended as specific ex-
amples—the framework is not limited to these examples, and 
we expect that instantiations for other cases can be readily de-
rived using analogous adaptations (we expand on this derivation 
in the concluding Section VI, after discussing the three specific 
instantiations presented in the paper). Although the goal of this 
work is not necessarily to achieve the current record in denoising 
performance for each image and each type of noise studied, in-
stantiations of iDUDE significantly surpass the state of the art in 
the case of salt and pepper (S&P) and -ary symmetric noise, 
and perform well for Gaussian noise. We expect that further re-
finements, extensive experimentation, and synergistic incorpo-
ration of ideas from other approaches will enable improvements 
in denoising performance over the results reported on here.

Denoising of signals and in particular digital images has been 
given considerable attention by the signal processing commu-
nity for decades, starting from the works by Kalman [10] and 
Wiener [11]. A comprehensive review included in [4] gives an 
account of the rapid progress on the problem in recent years. 
Inspection of the literature reveals that the work is divided into 
two fairly disjoint classes: additive (usually Gaussian) noise, 
and nonadditive noise (the latter includes multiplicative noise, 
although our focus in this class will be mostly on the so-called 
impulse noise types). We survey the main ideas behind a few of 
the recent approaches, which either have some conceptual con-
nections to our own, or will be used as references in the results 
of Section V. The reader is referred to [4] and references therein 
for a more comprehensive account.

For additive noise, the most relevant schemes are presented 
in [4], [12], and [13], and are discussed next; other approaches 
include wavelet thresholding [14], fields of experts [15],



and sparse representation [16] (which is combined with the 
multiscale approach in [17]). Also, in a different offshoot of [2], 
image denoising schemes for Gaussian noise [18] have been 
derived from extensions of the DUDE ideas to continuous-al-
phabet signals [19]. The nonparametric Bayesian least squares 
estimator developed in [4] is predicated on the observation 
that “every small window in a natural image has many similar 
windows in the same image.” The method uses this assumption 
to estimate each clean image sample as a weighted average 
of all the samples in the noisy image, where the weight of 
increases monotonically with a measure of similarity between 
the contexts of and (the noisy version of ). Despite 
being couched in very different mathematical languages, there 
is much affinity between the approach in [4] and the one in this 
paper—taken to bare-bones simplicity, the DUDE approach 
can be seen as also taking advantage of the quoted obser-
vation. This concept has been combined in [12] with a 3-D 
DCT-coefficient denoising technique, resulting in a scheme 
that achieves unprecedented performance for Gaussian noise. 
In this scheme, image windows with sample values similar 
to those in a window surrounding the sample to be denoised 
are aggregated into a 3-D array which is then denoised in the 
3-D DCT domain using thresholding or Wiener filtering. This
procedure is repeated for multiple relative positions of the
same noisy sample in the window, and the final estimate for
that sample is obtained as a weighted average. We remark that
window/neighborhood-based modeling and processing has also
been applied to the denoising of wavelet transform coefficients
of additive (Gaussian) noise corrupted images. This approach,
pioneered in [13] and refined in [20] and references therein,
involves modeling spatially proximate neighborhoods of clean
transform coefficients (which may include coefficients from
different decomposition levels) as scale mixtures of correlated
Gaussian vectors, estimating model parameters from noisy data
using empirical Bayes techniques, and denoising a “central”
coefficient to its minimum-mean-square-estimate given its
noisy neighborhood. A related approach is that of [21] and
references therein, in which the marginal distributions of clean
coefficients are modeled using parameteric distributions with
spatially varying parameter values that are estimated from
neighborhoods of noisy transform data. A tradeoff between the
estimation neighborhood size and the number of parameters in
a specific model based upon Hermite polynomials is studied
in [21]. This is somewhat related to the tradeoff we face here
between image size and context size/complexity.

Although the models in the previously mentioned works 
could be used with other types of noise, some of them were 
specifically designed with additive Gaussian noise in mind, and 
the results published are for that type of noise. Nonadditive 
noise, on the other hand, poses different problems. A typical 
example is given by the mentioned S&P noise, where a portion 
of the image samples are saturated to either totally black or 
totally white. For this type of noise, where outliers are very 
common, median-based estimators are widespread and fairly 
effective. Works like [22], [23] or [24] also exploit the fact 
that it is possible to identify with good accuracy candidate 
noisy samples, so as to avoid changing samples that are not 
corrupted, and sometimes to exclude noisy samples from some

computations. Impulse noise strongly impacts image gradients,
and therefore the variational approach of [25] (see also [26]) is
well-suited. In this approach, used in [27] and [28] to denoise
highly corrupted images, the denoised image is the result of a
tradeoff between fidelity and total variation. While the fidelity
term measures the difference between an image model based
upon edge-preserving priors and the observed data, the total
variation term measures the “roughness” of the image. Another,
more difficult type of impulse noise is the -ary symmetric
noise, where stands for the alphabet size of the clean (and
noisy) signals. In this type of noise, a sample is substituted,
with some probability, by a random, uniformly distributed value
from the alphabet, and a simple thresholding cannot separate
out the clean samples. Image denoising for -ary symmetric
noise is also addressed in [27] and [23].

The rest of the paper is organized as follows. In Section II,
we review the basic DUDE concepts, notations, and results from
[2] and [3]. Section III describes the tools with which the basic
DUDE is enhanced to form the iDUDE framework. We start by
defining a set of assumptions capturing properties of smooth-
ness, DC-invariance, and symmetry, which generally hold for
natural grayscale images. We then define a statistical model in-
corporating these assumptions through the use of context aggre-
gation for statistics sharing, including the use of conventional
image prediction. Some of the image assumptions, which are
postulated initially for clean images, turn out to be less useful
or even invalid in the noisy case, in particular under certain types
of impulse noise. Consequently, we proceed to adapt the statis-
tical model to noisy conditions. The key idea is to bypass the
DUDE’s intermediate modeling step of estimating context-con-
ditioned distributions of noisy samples, from which distribu-
tions of clean samples are obtained via a linear transformation.
In the framework, distributions of clean samples are es-
timated directly, without the intermediate stage. To that end, we
translate some of the modeling operations to a “cleaner” domain
in which our assumptions are again effective, by making use
of a prefiltered image to build and aggregate contexts, and by
effecting the channel inversion step of the DUDE on an amor-
tized, sample-by-sample manner, rather than applying a trans-
formation to a distribution of noisy samples as called for in the
basic DUDE. The prefiltered image can be obtained by using a
simple denoiser (e.g., a median filter), or from a previous appli-
cation of an iDUDE denoiser. This leads naturally to an iterative
scheme, by which each iteration produces a better reconstruc-
tion of the clean image, which is, in turn, used to build the con-
text model for the next iteration. Section IV describes the instan-
tiation of the iDUDE framework for S&P, -ary symmetric,
and Gaussian noise. For each noise type, we describe specific
embodiments of the modules of the framework (prefilter, pre-
dictor, channel inversion method). We note that the prefilter and
iteration mechanisms can lead to violations of the basic DUDE
statistical assumptions, and we also describe a statistics moni-
toring mechanism, instantiated for each noise type, that detects
these violations and can be used to stop iteration for the affected
parts of the image. In Section V, we describe experiments per-
formed with the denoisers described in Section IV, comparing
whenever possible with other denoisers from the literature, in-
cluding those yielding the best available published results for



the noise type of interest as of the writing of this paper. Finally,
in Section VI, we summarize our conclusions and directions of
further research.

II. BASIC DUDE

In this section, we review the basic DUDE algorithm from
[2], as extended to 2-D data in [3].

A. Notation and Problem Setting

Throughout, an image is a 2-D array over a finite al-
phabet of size (without loss of generality,

). We let denote
an image, also denoted when the superscript

is clear from the context. Let denote the set
of integers, and let denote the set of 2-D indices

. The th
component of a vector will be denoted by , or sometimes

when is a vector expression. Similarly, we denote a
typical entry of by (or ), . When the range of
an image index is not specified, it is assumed to be .

We assume that a clean image is corrupted by discrete mem-
oryless noise characterized by a transition probability matrix

, where is the probability that the
noisy symbol is when the input symbol is . The noise affects
each sample in the clean image independently, resulting
in a noisy image , where is a random variable distributed
according to . We regard this
process as going through a noisy channel, refer to as the
channel transition matrix, and to as the channel output.
We assume, for simplicity, that the clean and noisy images are
defined over the same alphabet—the setting in [2] is more gen-
eral, allowing for different input and output alphabets. We also
assume, following [2], that is nonsingular. In later sections
of this paper, however, we will consider some channel matrices
which are nonsingular but badly conditioned and we treat them,
in practice, as singular.

A image denoiser is a mapping
. Assume a given per-symbol loss function
, represented by a matrix , where

is the loss incurred by estimating the symbol with the
symbol . For we let denote the normal-
ized denoising loss, as measured by , of the image denoiser

when the observed noisy image is and the underlying
clean one is , i.e.,

where we recall that is the component of
at the th location. We seek denoisers that minimize this loss
in a stochastic sense (under the distribution generated by the
channel). Notice that the mapping may depend upon the
channel transition matrix and the loss function , but not on
the clean image , i.e., given and , a noisy image will
always result in the same denoised image , indepen-
dently of which combination of clean image and noise realiza-
tion produced .

B. Description and Properties of the DUDE

We start with some definitions that formalize the usual no-
tion of context. A neighborhood is a finite subset of that
does not contain the origin (0,0) (referred to as the center of the
neighborhood). As an example, the 3 3 neighborhood referred
to in Section I is . For

, we denote by the set , and, by exten-
sion, we say that is its center. For an image and
we denote by a vector of dimension over , indexed by
the elements of , such that . We refer to
such vectors as -contexts, or simply contexts (with a known
underlying neighborhood implied), and say that occurs in
context (recall that ). For “border” indices such
that , the vector is also well defined by as-
suming, e.g., that the value of any “out of bound” sample is set
to an arbitrary constant from .

For a neighborhood and a generic context vector , we let
denote the -dimensional column vector whose com-

ponents are

(1)

In words, denotes the number of occurrences of the
symbol , in context , in the image .

We denote by the component-wise (Schur) product
of the -dimensional vectors and , namely,

, . The transpose of a matrix (or vector)
is denoted , and if is a nonsingular matrix, we write

as shorthand for . Finally, let and denote
the th columns of and , respectively, for .

We are now ready to define the basic DUDE. For a given
neighborhood , the fixed-neighborhood DUDE, ,
is defined, for , by

(2)

The basic DUDE, , is obtained by letting the size of
the neighborhood grow at a suitable rate with and (refer
to [2] and [3] for details).

The intuition behind the denoising rule in the fixed-neighbor-
hood DUDE (2) is as follows. After proper normalization, the
vector in (2) can be seen as the empirical conditional
distribution, , of a noisy sample given its context, and
the vector as an estimate of the empirical distri-
bution of the underlying clean sample given the noisy
context (we say that the multiplication by the matrix per-
forms the “channel inversion”). The vector

(3)

in turn, can be interpreted, after normalization, as an estimate
of the posterior distribution of the clean sample

given the noisy context and the noisy sample . The ex-
pression (2) corresponds to a loss-weighted maximum a pos-
teriori estimate of with respect to . In a sense,
the expression in (3) combines two pieces of “advice” on the
value of the clean symbol . On one hand, the estimated con-
ditional distribution conveys information on what the
clean symbol in position is likely to be, given what is observed



Fig. 1. Outline of the DUDE algorithm.

in the same context in the rest of the noisy image, while on the
other hand, the noisy sample itself conveys information on the
likelihood of which is independent of the rest of the image,
given the memoryless assumption on the noise. If the noise level
is not too high, the advice of is given more weight, while
in more noisy conditions, the advice of the context gains more
weight. The algorithm is outlined in Fig. 1.

The universality of the denoiser has been shown in
two settings. In the stochastic setting, the image is assumed
to be a sample of a spatially stationary process. The results of
[2], as extended to the 2-D case in [3], state that in the limit
(as ), almost surely (with respect to both the
input and the channel probability laws), the DUDE loss does not
exceed that of the best denoiser. In the semistochastic
setting, the input is assumed to be an individual image, not gen-
erated by any probabilistic source, while the channel is still as-
sumed probabilistic. It is shown in this case that, almost surely
(with respect to the channel probability law), the asymptotic loss
of the DUDE is optimal among sliding window denoisers (see
[2] and [3] for details). Here, the result holds independently for
each individual image (in particular, the competing denoisers
could be designed with full knowledge of the pair of images

). Notice that most image denoisers used in practice are of
the sliding-window type.

In addition to its theoretical properties, the DUDE is also
practical (see [2] for an analysis showing linear running time
and sublinear working storage complexities). The algorithm, in
both its 1-D and 2-D versions, has been implemented, tested,
and shown to be very effective on binary images [2], [3], text [2],
and large HTML code files [29]. In [30] and the current work,
we enhance the basic scheme to make it effective on grayscale
images.

III. IDUDE: A DUDE-BASED FRAMEWORK FOR

GRAYSCALE IMAGE DENOISING

In this section, we describe the iDUDE framework in terms of
the tools incorporated into the DUDE scheme to enable effective
denoising of grayscale images. The framework is described here
in generality covering a broad class of channels. Instantiations
for specific channels are presented in detail in Sections IV, V.

A. Addressing the Model Cost Problem

Estimating empirical conditional distributions of
image samples given their (noisy) context is a crucial compo-

nent of the DUDE algorithm. As mentioned in Section I, esti-
mating these distributions by collecting sample counts for “raw”
contexts is ineffective for images of practical size. To address
this problem, we exploit our prior knowledge of the structure of
the input data via a stochastic model in which con-
texts share and aggregate their information. This will allow us
to learn additional information about the distribution of, say,
given its context , from occurrences of samples , depending
upon how “close” is to in an appropriate sense. We will
then use our estimate of as an estimate of ,
and apply the denoising rule. Expressed in a different mathe-
matical language, this “shared learning” paradigm can be seen
to be taken to the limit in [4], where every context contributes,
in an appropriately weighted form, to the denoising of every lo-
cation of the image.

For the targeted grayscale images, our prior knowledge takes
the form of assumptions of brightness continuity (or, in short,
smoothness), statistical invariance under constant shifts in ab-
solute brightness (DC invariance), and symmetry. Next, we dis-
cuss these assumptions, and how they translate to various mod-
eling tools. The assumptions and tools apply to clean images
(denoted as ), and they will clearly break down in some cases
of images affected by noise. We defer the discussion of how,
nevertheless, the tools are used in the iDUDE framework to
Section III-D. Until then, we ignore the effect of noise.

A1) Smoothness. By this property, contexts that are
close as vectors will tend to produce similar conditional
distributions for their center samples. Therefore, contexts
can be clustered into conditioning classes of vectors that
are “similar” in some sense, e.g., close in Euclidean space,
and the conditional statistics of the member contexts can be
aggregated into one conditional distribution for the class,
possibly after some adjustment in the support of each dis-
tribution (see A2). There is a tradeoff between the size of a
conditioning class (or the total number of classes) and the
accuracy of the merged distributions as approximations of
the individual context-conditioned distributions. If classes
are too large, they will include contexts with dissimilar as-
sociated conditional distributions, and the merged distri-
bution will not be a good representative of the individual
member distributions. If classes are too small, the asso-
ciated merged statistics will be sparse, and they will not
have faithfully captured the structure of the data. This is the
well known tradeoff in stochastic modeling which is at the
core of the minimum description length (MDL) approach
to statistical inference [31]. Algorithmic approaches to the
optimization of the model size (number of classes) exist,
and have been implemented successfully in lossless image
compression [32]. However, simpler schemes based upon
carefully tuned but fixed models, such as those used in [5]
and [6] achieve similar levels of performance at a lower
complexity cost. We will take the latter approach in our
design of a context model for iDUDE. Although we have
mentioned Euclidean distance between contexts (as vec-
tors) as a natural measure of “closeness,” similarities in
other features may also be used, such as a measure of the
activity level in the context (e.g., empirical variance), or a
signature of the context’s texture [6]. The use of these tools



in iDUDE will be discussed concretely when we describe
implementations in Section IV.
A2) DC invariance (i). Since similar contexts are expected
to generate conditional statistics which are similar in shape
but with slightly misaligned supports, merged conditional
statistics generated as in A1 would be “blurred.” This mis-
alignment can be compensated for by using a predictor for
the center sample of each context as a function of the con-
text samples, and accumulating statistics of the prediction
errors rather than the original sample values. It has long
been known (see, e.g., [33]) that such prediction error dis-
tributions are peaked and centered near zero (Laplacian or
generalized Gaussian models have proven very useful to
model these distributions). When the merged distribution
is used for a specific sample, e.g., in Step 2 of the proce-
dure in Fig. 1, the prediction error distribution should be
recentered at the predicted value for the sample, which can
always be recovered from the sample’s original context.
The next item shows how the use of prediction allows for
a broader notion of similarity between contexts.
A3) DC invariance (ii). Since contexts that differ only by a
constant brightness level are likely to produce similar con-
ditional distributions up to a shift in their support, statistics
may be conditioned on gradients (differences between spa-
tially close sample values) rather than the sample values
themselves, so that conditional statistics of contexts that
differ only by a constant intensity vector are merged. More
specifically, if is a context, , and denotes a con-
stant vector with all entries equal to , then

(4)

where we assume that , ,
and the sign denotes that we expect these probabilities
to be “similar” in some sense appropriate to the applica-
tion. Clearly, before they are merged, the conditional dis-
tributions must be shifted so that they are centered at a
common point. This is accomplished by using prediction
as described in A2. Also, when gradients are used to build
contexts in lieu of the original sample values, the clus-
tering described in A1 is applied after the switch to gra-
dient space. Notice that although the use of prediction de-
scribed here and the one described in A2 are related and
derive from the same assumption, they are not equivalent.
The use of prediction as mentioned in A2 is advantageous
but optional when original samples are used to form the
contexts, but it becomes mandatory if contexts are based
upon gradients.
A4) Symmetry. Patterns often repeat in different orien-
tations, and statistics are not very sensitive to left/right,
up/down, or black/white reflections.3 Thus, contexts that
become close as vectors after shape-preserving rotations
or reflections of the underlying neighborhood pattern,
or gradient sign changes (i.e., change in sign of all the
differences mentioned in A3), will tend to produce sim-

3By black/white reflection invariance we mean that if � is a context vector,
and � is a constant vector with all entries equal to the largest possible sample
value, � � �, then we expect � ����� � � �� � �� ��� � ��.

ilar conditional distributions, which can be merged as
in A1–A3. To take advantage of these symmetries, con-
texts should be brought, by means of sign changes, and
shape-preserving neighborhood rotations and reflections,
to some canonical representation that uniquely represents
the context’s equivalence class under the allowed map-
pings (an example of such a canonical representation will
be described in Example 1). When bringing a context to
canonical representation involves a gradient sign change,
the support of the corresponding conditional distribution
should be flipped around zero before merging with the
other distributions in the conditioning class.

Clearly, the accuracy and appropriateness of the assumptions
underlying A1–A4 will vary across images, or even across parts
of the same image. Nevertheless, they have proven very useful
in image compression and other image modeling applications.
In particular, the use of a prediction function in the iDUDE
framework allows for conditional distributions that would oth-
erwise be considered different to “line-up” and be merged in a
useful way. Thus, as in data compression, prediction is an im-
portant tool in model cost reduction [9] and the quality of the
predictor affects the performance of the system. The better the
predictor, the more skewed the distribution of prediction error
values, which, in turn, will lead to a “sharper” selection of a
likely reconstruction symbol as learned from the context (see
the discussion following (2)). In some applications, additional
knowledge on specific image characteristics going beyond the
basic set A1–A4 may be available. In those cases, the additional
prior knowledge could be incorporated into the design of the
predictor, additional symmetries, or other aspects of the context
aggregation strategy.

We also note that the use of a fixed context template matches,
implicitly, the assumption of stationarity in the stochastic ap-
proach to the DUDE in [2] (and is in fact identical to the “sliding
window” of the semistochastic approach). The intuitive assump-
tion is that “the same context will produce the same conditional
distribution,” independently of where the context occurs in the
image, which is implicitly adopted in all image processing algo-
rithms based upon sliding windows (including the best lossless
image compression schemes).

Example 1: Fig. 2 shows an example of the application of the
tools described in A1–A4. Assume that is the 3 3 neigh-
borhood of samples closest to the center sample, and that the
empirical distribution of this sample conditioned on each of the
contexts labeled and is as illustrated on the right-hand
side of Fig. 2. We use the average of each context, namely,

, and , as a predictor. We then
subtract the predicted value from each sample to obtain a differ-
ential representation, , of each context , as follows:

We define the canonical representation of a context as one in
which the upper left corner contains the largest entry, in absolute
value, of the four corners of the context (this can always be ar-
rived at by 90 rotations), and the upper right corner contains the
largest entry, again in absolute value, of the two corners on the



secondary diagonal of the neighborhood (this can be achieved 
by a reflection, if needed, around the main diagonal after the ini-
tial rotation). Furthermore, we require the entry at the upper-left 
corner to be nonnegative, and we flip the sign of the context if 
this is not the case.4 The array marked in the figure shows 
the result of the previously mentioned transformations on con-
text . For context , the same transformations would result in 
the value 77 at the upper left corner. Therefore, we change the 
sign of all the entries in the context, resulting in the array labeled

in the figure. This sign change also means that prediction er-
rors are accounted for in the merged histogram with their signs 
changed, or equivalently, that the original empirical distribution 
conditioned on is reflected around zero before merging. Fi-
nally, we observe that the canonical representations and 
are close in Euclidean distance, and we assume that they will 
be assigned to the same conditioning class. Thus, the distribu-
tions conditioned on and merge, resulting in the common 
distribution centered at zero represented on the left-hand side of 
the figure.

B. Formal Model and Its Estimation From Clean Data

In this subsection, we formalize the prediction-based model
outlined in Section III-A for samples of an image

conditioned on their contexts for a given neighborhood
(which, as mentioned, we will not attempt to optimize). We

first define the notation and terminology. Let
denote a mapping that predicts a sample as a function of its
context, and let denote a function mapping
a context to a differential representation (e.g., through the use
of gradients) which is invariant under constant translations of
the context components. Let denote a func-
tion that maps differential representations to a unique canon-
ical representation by applying shape-preserving rotations and
reflections to (e.g., as described in Example 1).5 Finally, let

, denote a classification
function mapping canonical representations to a set of con-
ditioning classes, or clusters (this function may be image-de-
pendent). Abusing notation, we will also use to denote the
composition of , , and , so that denotes the cluster
corresponding to a context .

Our model of the image is generated by conditional prob-
ability distributions , of prediction error values ,

, associated with each conditioning class
, (the previously mentioned ranges of

and are implicitly assumed throughout the discussion). Under
this model, a prediction error has probability and
the corresponding conditional distribution of a
sample , , that occurs in context , given its
conditioning class , is implied by the relation

4We omit a discussion of ambiguities and tie-breakers, which are easily han-
dled so that the canonical representation is unique.

5To simplify notation, we will assume the canonical representation does not
include sign changes; this technique is also easily implemented, cf. Example 1
and [5], [6].

In words, the conditional distribution is shifted by
and the mass corresponding to negative values accumu-

lates at 0, whereas the mass corresponding to values larger than
accumulates at (i.e., the signal “saturates” at the

black and white levels).6 This relation is more conveniently ex-
pressed in vector notation, by letting denote an indicator
(column) vector of length , with a 1 in position ,

, and zeros elsewhere, and representing the observation
of a sample as . For , define the
matrix

...
...

...

...
...

... (5)

where denotes an identity matrix of order . With these def-
initions, the relation between and takes the form

(6)

Similarly, we will regard conditional probability distributions
as (column) vectors , indexed by the sample

space of .
With access to , the distribution can be estimated

from samples occurring in the context by selecting a suit-
able estimation matrix , that depends upon the predicted
value , and accumulating into a vector

of dimension . The role of is to map the -di-
mensional indicator vector into a vector of the same dimen-

sion as the desired estimate. Specifically, letting ,
the estimate

(7)

where the matrix acts as a normalization factor, is in fact
unbiased for any choice of the estimation matrices that
leads to a well-defined .7 This property is readily seen by re-
placing in (6), premultiplying each side of (6) by ,
summing both sides over all the indexes such that ,
and noting that the expectation of under is

. A natural choice for is the matrix , where

6Our implementation uses this saturation model for simplicity. Other, more
sophisticated models are possible.

7If necessary, pseudo-inverse techniques can be used, as discussed in Sec-
tion III-F. However, as will become clear later in this subsection, the invertibility
problem will not arise for our choice of estimate.



Fig. 2. Merging of context conditional distributions.

(8)

with representing a zero matrix. This choice corre-
sponds to incrementing the entry of by one for index
: the observation of gives the observer a sample from the

“window” (of size ) of the support (of size
) of .

The normalization by differs from the natural choice of
(uniformly) normalizing by the sum . This difference
accounts for two factors: first, the saturation in the model (6),
and second, the fact that the number of times a given entry of

has an opportunity to be incremented, denoted , depends
upon the number of predicted values such that falls in the
window . Notice, however, that the
variance of the ratio is, under reasonable assumptions,
inversely proportional to . Therefore, small values of will
produce estimates of high variance for the corresponding entry
of and, hence, uniform normalization has the effect
of producing estimates with a more uniform variance, which
is a desirable property. Consequently, we will replace with
a diagonal matrix effecting uniform normalization and use the
resulting estimate for .

With the estimated distribution in hand, the cor-
responding estimate of based upon is given by the
vector

(9)

The overall modeling procedure is outlined in Fig. 3 where, in
preparation for the situation in which the model is estimated
from noisy data, we have decoupled three images that so far have
been folded into : the noisy input image , an available image

(which will be derived from ), and the clean image . Thus,
contexts are denoted and are formed from , and the update
of uses the observed sample (rather than the unavailable
value ), appropriately replacing with a matrix
to be introduced in Section III-D. The case of estimating the
model from clean data corresponds to .

In Fig. 3, as in the preceding discussion, we have assumed,
for simplicity, that the prediction function is fixed, in the sense
that its value depends only upon the sample values of the context
it is applied to. The actual procedure used in iDUDE is enhanced
with the addition of an adaptive component to the prediction

Fig. 3. Estimation of conditional distributions based upon prediction and con-
text classification.

function, that depends also upon image statistics associated to
the context, and a two-stage context clustering strategy. We dis-
cuss these enhancements next.

C. Two-Stage Modeling

It has been observed (see, e.g., [5]) that conditional distri-
butions of prediction errors produced by a fixed predictor ex-
hibit context-dependent biases. To improve prediction accuracy,
a bias cancellation component is used in conjunction with the
fixed predictor. To derive this component, contexts are clustered
in two stages.

Let be a fixed predictor, as discussed in Section III-B. We
assume that a first-stage classification function

, mapping canonical representations
to prediction clusters (or classes), is defined. Let denote the
set of sample indices such that (where, again,
we abuse the notation for ), and let . For each cluster

, , we compute a bias correction value that will be
applied to samples in as

(10)

The final predicted value for , , is then given by
, where denotes the integer closest to . Due

to this rounding operation, rounding to an integer is no longer
necessary in the fixed prediction function . Therefore, we rein-
terpret this function as one mapping contexts to real numbers,
while the refined predictor can be seen as an integer-valued
function that depends upon the samples in , and also
on the image through the bias value estimated for .

After applying the bias correction, statistics for the corrected
prediction errors are collected in a (generally) coarser set of con-
text clusters, i.e., the clusters are reclustered into the set
of conditioning classes , where each class

, merges samples from several clusters .
Hereafter, we interpret the modeling procedure in Fig. 3 as using
the prediction function and corresponding prediction values

throughout in lieu of and , respectively.



Fig. 4. Effect of S&P noise on merging of similarly-shaped distributions cen-
tered at different values.

D. Model Estimation in the Presence of Noise

The discussion in Sections III-A–III-C has focused on the
modeling of a clean image, ignoring the effect of noise. A first
intuitive approach to incorporating the model into a DUDE-like
scheme would apply the context transformation and clustering
operations of Fig. 3 to the noisy image to obtain cluster-con-
ditioned distributions as proxies for the distributions
called for in Step 1 of Fig. 1, and then, following the proce-
dure of the same figure, use a channel inversion procedure to ob-
tain the distribution estimates used in the denoising
rule. To illustrate why this approach would not be effective in
general, consider, for example, a S&P channel. In this channel, a
fraction of the samples are saturated to black (sample value 0)
or white (sample value ) with equal probability. Clearly,
noisy samples in this case generally will not obey smoothness
or DC-invariance assumptions. This affects both the samples
whose distributions we are modeling, and the contexts that con-
dition these distributions. On the one hand, contexts that are sim-
ilar (and could be clustered) in the clean image will generally
not remain so in the noisy image. On the other hand, distribu-
tions that have similar shapes up to translation in the clean image
may not remain so, as they may be differently positioned with
respect to the spikes at 0 and caused by the noise. The
latter effect is illustrated in Fig. 4, where it is clear that, since
the merged statistics are not typical of a S&P channel output,
application of the channel inversion procedure and denoising as
in Fig. 1 will not remove the noise.

Although the effect of noise may be more benign for other
channels, it is clear from the previous discussion that, in general,
additional tools are required to use our image model effectively
when the available data is noisy. We discuss the issues of context
aggregation and distribution estimation, separately, next.

1) Context Modeling Through Prefiltering: As mentioned,
by destroying context similarities, noise can severely limit our
ability to aggregate contexts and let them share their statistics.
Instead, we will translate the operations on contexts, leading to
assignment of samples to conditioning classes, to a “cleaner”
domain, where context similarities existing in the unavailable
image are more likely to be preserved. To this end, we adopt
the following additional modeling assumption.

A5) Robust clustering. We have access to an image such
that the formal model of Section III-B (for the clean sam-
ples) still applies when the unavailable clean context, ,
is replaced by the corresponding available context, , in

.
The image can be obtained from available data through

“rough” denoising or prefiltering of the noisy image using a
(possibly simpler) denoiser appropriate for the type of noise of
interest (e.g., a median filter for S&P noise). Intuitively, we pos-
tulate that applying the clustering operations of the procedure in
Fig. 3 to the prefiltered image will result in an assignment of
samples to conditioning classes similar to the one we would ob-
tain if we had access to . In cases where the effect of noise on
context aggregation is less severe (e.g., Gaussian noise at high
SNR), a trivial prefilter with might suffice.8 On the other
hand, for the more severe cases, Section III-E discusses an iter-
ative process where can be the output of a previous iteration
of iDUDE.

Our rationale for Assumption A5 is based upon the fact that
is still a good predictor of , and therefore an effective

model with few conditioning classes, via context aggregation,
can be built from . The image is also used for bias can-
cellation, with replacing in the bias calculation (10). For
zero-mean, additive noise, we could use the noisy samples ,
since the effect of noise will tend to cancel. However, such a
strategy would generally fail for nonadditive noise.

It should be noted that prefiltering introduces some depen-
dence of contexts on their noisy center samples , since
the value of might have participated in the rough denoising
of some of the components of . This “contamination” is un-
desirable since, by virtue of the independence assumptions on
the channel, in the denoising rule (2), the information on is
fully incorporated in to produce, via the Schur product, the
correct overall clean symbol likelihoods used by the rule. How-
ever, it turns out that practical heuristics will allow us to de-
tect when this dependence is strong enough to negatively impact
the performance of the denoising algorithm and act accordingly
(see Section IV-B). Prefiltering can also be seen as a tool for
capturing higher order dependencies without increasing model
cost. Clearly, with conditioning classes based upon a prefiltered
image, the conditioning events for the original noisy samples
depend upon a larger number of original samples than the size
of the neighborhood used. Thus, prefiltering increases the ef-
fective size of the contexts used to condition the distributions,
without increasing the number of conditioning classes.

2) Estimation of Clean Sample Distributions From Noisy
Data: Our task is now to estimate the previous model for
clean image samples, conditioned on contexts formed from an
available image (which is obtained from the noisy image ).
To this end we follow the procedure of Fig. 3, but take into
consideration the fact that we have access to , rather than to
the clean image . Notice that while our goal coincides with the
main step in the baseline DUDE algorithm, namely to produce

8In fact, as will be discussed in the sequel, when the alphabet is large and the
noise is additive, zero-mean, and rapidly decaying, the choice � � �, together
with properties of the channel transition matrix and some mild assumptions, will
make the procedure derived from our enhanced approach effectively coincide
with the intuitive procedure outlined at the beginning of the section.



an estimate of the posterior distribution of the clean symbol
given the noisy context and the noisy symbol , we will
accomplish it directly, without going through the intermediate
step of estimating distributions of noisy samples.

To see how the model is estimated from noisy data using
the DUDE approach, we revisit the derivation in Section III-B.
When the image being sampled is noisy, each sample pro-
vides information about the -vector , subject
to the same arbitrary shifts and saturation as before [see (6)],
but also to noise. Now, recall from the discussion following (2)
that, in the DUDE algorithm, the channel inversion is accom-
plished by premultiplication by the matrix . Thus, just as
an occurrence of contributes to the estimate in (7)
(when based upon clean data), an occurrence of can be seen
as contributing . This motivates the DUDE-like
estimate (for the prediction setting)

(11)

where is a normalization matrix. It can be shown that if
is set to as in (7) (with in lieu of ), then (11) becomes
an unbiased estimate of . Replacing again with a
uniform normalization, it follows that the procedure in Fig. 3
applies, with

(12)

and as defined in (8).
When the alphabet is large, and the noise is additive, zero-

mean, and rapidly decaying, we write , where
is the prediction error value, and is the noise addition drawn

by the channel. It can be shown that, due to the commutativity
of addition, the “shift” effect of the matrix commutes with
the effect of the channel in (12), and the resulting procedure
is essentially equivalent (up to negligible border effects) to the
intuitive procedure described at the beginning of the subsection,
which is indeed effective for this type of noise.

In the more general case, at first sight, with the choice of es-
timation matrix in (12), the update of in Fig. 3 involves

operations per image sample. However, as we shall see in
Section IV, for the channels of interest, this procedure can be
implemented with one scalar increment to a histogram of pre-
diction errors per sample, followed by adjustments whose com-
plexity is independent of the image size.

The estimate of in (11) can be interpreted as fol-
lows. Define , referred to as a
subcluster. For a cluster , the result of Step 2 of the proce-
dure in Fig. 3 (with the choice (12) for ) can be written
as

(13)

where denotes a vector of occurrence counts of noisy sym-
bols in the subcluster . The expression in the 
sum on the right-hand side of (13) represents an estimate of the 
empirical distribution of samples condi-
tioned on the subcluster , where the multiplication by 
performs the “channel inversion.” Shifted by , it becomes a 
conditional distribution of prediction errors. Equation (13) says 
that our estimate follows along the lines of the basic DUDE, ex-
cept that it does so for the subclusters . The distributions 
of prediction errors for clean symbols obtained for the subclus-
ters are merged to yield , and the estimated conditional 
distribution of given is given by (9). Notice, however, that 
the goodness of this estimate does not rely on the law of large 
numbers “kicking in” for each subcluster, but rather for each 
cluster.

In general, the matrix in (12) may have negative en-
tries, which may place the estimate obtained in Step 3 
of Fig. 3 outside the probability simplex. This situation reflects 
statistical fluctuations and is more likely to occur if the sample 
size is not large enough. The estimate is then modified as fol-
lows. Let denote the entries of ,

, and, for real numbers , , let denote
if , or 0 otherwise. Consider a real number , .
Since , there exists a real number such that

(14)

It is not difficult to verify that if , the vector with en-
tries represents the point on the probability
simplex that is closest in distance to . The trans-
formation from to the vector of entries can be seen
as a “smoothing” of , which clips its negative entries, if
any, and possibly also some of the small positive ones. Choosing

and renormalizing effects a more aggressive smoothing
of the tails of the distribution, which was found to be useful in
practice to obtain more robust denoising performance. We refer
to this operation as a regularization of the estimated distribu-
tion , and include it as part of Step 3 in the procedure
of Fig. 3.

Finally, the corresponding estimate obtained in
Step 4b of the procedure of Fig. 3 is used to compute the
estimated posterior

employed by the DUDE rule (see (3)). The rule (2) then takes
the form

(15)

E. Iterative Process

The process of using a prefiltered image for the purpose of
context formation can be repeated iteratively, using the iDUDE
output from one iteration as the input for the next, starting from
some “roughly denoised” image. The iterations tend to improve
the quality of the context and increase the effective size
of the neighborhoods, as discussed. The iterative procedure



Fig. 5. Iterative denoising with prefiltering.

can be stopped after a fixed number of iterations, provided
that a method for detecting undesirable “contamination” of
the contexts with the values of their center samples is used
(see Section IV-C). The iterative procedure is summarized in
Fig. 5, where we denote by the set of conditioning classes
derived from an image . It is important to notice that, in each
iteration, while the prediction classes and
the predictions are computed from prefiltered samples from

, the statistics used for estimating the cluster-conditioned
distributions used in the actual denoising (the vectors ) are
derived from the original noisy samples in .

F. Channel Matrix Inversion

iDUDE, as the original DUDE, relies on computing the in-
verse of the channel transition matrix to estimate the pos-
terior distributions used in the denoising decisions. Although

is formally nonsingular for the channels we consider, it is
very badly conditioned in some important cases, and, most no-
tably, in the Gaussian case. Notice, however, that the choice
of estimation matrices in (11) is arbitrary, and that a
different choice, that would formally cancel , may alle-
viate the problem. Another approach for these channels is to
proceed as in the derivations of (7) and (11), but perform the
channel inversion by solving for the conditional distributions

with a numerical procedure to minimize a function
of the form (up to numerical tolerances
and stability), subject to the constraint that represent
valid probability distributions, where denotes some norm
on -vectors

and the sums are over all occurrences of . The matrices
are again a natural but arbitrary choice, and

can be replaced with a suitable set of estimation matrices that
would result in a better numerical behavior.

Maximum-likelihood estimation of is also pos-
sible, at a higher computational cost. This approach becomes
attractive when both the noise process and the conditional
distributions admit simple parametric models; we
illustrate it by describing its application in the (quantized)
Gaussian noise case. As mentioned, context-conditioned dis-
tributions of prediction errors for clean natural images are
well modeled by a discrete Laplacian [33], [34], which is
parametrized by a decay factor and a mean (not necessarily
an integer value). Denoting , a prediction error is

assigned, under this model, probability if
and otherwise, where the coefficient

is such that the mean of the distribution equals . We
assume this model for the difference , conditioned
on the cluster of , where we recall that is the (unob-
served) predicted value for that would have been obtained
by applying the predictor on the clean image . To estimate the
unknown, cluster-dependent parameters , from the data, we
first notice that

(16)
where the left-hand side of (16) is an observed statistic. As-
suming, for simplicity, that the prediction function is an av-
erage of samples, is well modeled by a
zero-mean normal random variable with variance . While

is a better approximation to , we adopt this normal
model also for . Thus, conditioned on ,
the left-hand side of (16) can be modeled as the convolution
of a zero-mean normal distribution with variance
and a Laplacian. We refer to such a convolution as a LG dis-
tribution, or , with denoting the variance of the
normal distribution participating in the convolution; in the fore-
going example, . Explicit formulas for the
probability mass function of a discrete LG distribution and its
derivatives with respect to the parameters , and can be de-
rived in terms of the error function (see Appendix A). Al-
though these expressions are rather unwieldy, they lend them-
selves to numerical computations, and therefore allow for a nu-
merical maximum-likelihood estimation of the parameters and

( is assumed given) from the statistics collected
for the conditioning class cluster of . In our implementa-
tion we use a simpler parameter estimation procedure, described
in Section IV-F. With these estimated parameters on hand, we
write

and estimate to be a centered at
, where and are the estimated Laplacian parameters.

This derivation extends to cases where other linear or piece-
wise-linear predictors are used, with appropriate adjustments
of the constant above. For more complex predictors, the pa-
rameter can be estimated together with the other parameters,
under the constraint that . The estimate , in turn,
would be a . Notice that these computations
are carried out only once per conditioning cluster, at the end of
the first pass of the DUDE denoising procedure, and indepen-
dently of the size of the image.

Aside from providing an alternative to the channel matrix in-
version, this parametric approach has model cost advantages,
since only two parameters, and , need to be estimated per
conditioning class [34], as opposed to parameters when
individual probabilities for each symbol are estimated.

IV. IMPLEMENTATION FOR VARIOUS NOISE TYPES

In this section, we describe instantiations of the iDUDE
framework for three types of noise, namely, S&P noise, -ary



Fig. 6. Neighborhood for the WGT modeling scheme.

symmetric noise (which leaves a sample intact with a certain
probability , or replaces it with a uniformly distributed
random value from the complement of the alphabet with
probability ), and quantized additive white Gaussian noise.
We assume that the Euclidean norm is used for the loss
function in all cases [other norms are easily implemented
by suitably adapting the optimization (15)]. In all cases, we
follow the flow of the DUDE algorithm, with model estimation
as outlined in Fig. 3. We begin by describing components that
are common to more than one channel, and then discuss the
specifics of the implementation for each channel.

A. Prediction and Conditioning Model

Our context model is based upon the 5 5 neighborhood
shown in Fig. 6. We describe a predictor and a quantization

scheme that map a generic context from an image into a
fixed prediction value , a conditioning class , and a
prediction class . The predictor and quantizer draw from
ideas in [5] and [6] to classify contexts by computing a context
signature derived from gradients as well as a bitmap reflecting
the context’s “texture.” For ease of reference, we will refer to
both the predictor and the context quantizer as wing gradients
and texture (WGT).

We denote by the value of the sample in coordinate
of the neighborhood in Fig. 6, with , . As the
neighborhood slides accross the image, the actual coordinates
of the context samples are , ; for clutter re-
duction, we omit the center coordinate in this discussion and
in Appendix B. A context is brought to canonical form via rota-
tions and reflections as described in Example 1, with “entry at
the upper-left corner” interpreted as the sum

, and analogously for the other corners. Context
signs are not implemented.

Once the context is in canonical form, it is decomposed
into eight (overlapping) wings: four horizontal/vertical wings
labeled , , and , and four diagonal wings labeled ,

, and . Referring to Fig. 6, the wing consists of
the samples with coordinates ( 1, 0), (1, 0), ( 1, 1), (0, 1), (1,
1), and (0, 2). The , , and wings are defined similarly,
following appropriate 90 rotations. As for the diagonals, the

wing is formed by the samples with coordinates (1, 1),
( 1, 1), (2, 0), (1, 1), (0, 2), and (2, 2), with the ,

, being formed by appropriate 90 rotations. For each
wing, we compute a sample average and a directional gradient.
The fixed predictor is computed as a nonlinear weighted
function of the wing averages and gradient magnitudes, with
more weight given to wings with lower gradient magnitudes.
The goal is to emphasize parts of the context that are “smooth”

(i.e., of low gradient), and deemphasize parts that might be 
crossed by sharp edges. The precise details of the computation 
are given in Appendix B.

Gradient magnitudes computed for prediction are also used to 
derive an integer-valued activity level, , for each context, 
as also described in detail in Appendix B. Conditioning classes 
are obtained by quantizing into regions, such that the 
induced classes are of approximately the same cardinality. To 
form the prediction classes, the activity level classification is 
refined by computing a representation of the texture of the con-
text. This representation takes the form of a bitmap with one 
bit per context sample; the bit is set to 0 if the corresponding 
sample value is smaller than the value predicted by the 
fixed predictor, or to 1 otherwise [6].

The classification of the contexts into prediction classes is 
accomplished by computing a context signature combining the 
activity level and the first bits from the texture bitmap, , 
taken in order of increasing distance from the center. Thus, the 
number of prediction classes is . Notice that since 
the activity level of a context is derived from differences (gradi-
ents) between sample values, and the texture map from compar-
isons with a predicted value, the resulting context classification 
is DC-invariant.

B. Choosing Denoiser Parameters Without Access to the
Clean Image

In practice, the optimal settings of various iDUDE parame-
ters, such as the number of prediction and conditioning classes, 
or the number of iterations in the procedure of Fig. 5, may vary 
from image to image. The most obvious difficulty in choosing 
image-dependent settings is that denoising performance cannot 
be measured directly, since the clean image is not available to 
the denoiser. Thus, we have no direct way of telling whether 
one setting is better or worse than another. Nevertheless, various 
methods for choosing the best parameters for the DUDE have 
proven effective in practice, and can be used also for iDUDE. 
Some of these methods are based upon using an observable pa-
rameter that correlates with denoising performance, and opti-
mizing the settings based upon the observable. An example of 
such a heuristic, described in [2], suggests using the compress-
ibility of the denoised sequence. More principled techniques, 
based on an unbiased estimate of the DUDE loss, are described 
in [35].

In our implementations, we have grouped images by size 
(“very small,” “small,” and “large”), and by noise level for 
each channel, and have chosen one set of parameters for each 
size/channel/noise level combination. The choices, which are 
fairly robust, were guided by performance on an available set 
of training images, and also by basic guidelines on context 
models: larger images can sustain larger models, and so do 
cleaner images (intuitively, since less is learned from noisy data 
than from clean data). Specific parameter values are given in 
Table II of Section V.

C. Monitoring of the Statistical Model During Iteration

As mentioned in Section III-E, the iDUDE iteration of Fig. 5
introduces dependencies between contexts and their noisy
center samples , since the value of might have participated



Fig. 7. Effect of statistics monitoring on the iDUDE iteration performance
(S&P noise).

(directly or indirectly) in the rough denoising of some of the
components of . We have observed empirically that these de-
pendencies can cause significant deviations from the expected
behavior of the statistical model, which, in turn, can translate to
a deterioration of the denoising performance after a number of
iterations. To prevent this effect, we employ a heuristic that is
particularly useful for the nonadditive channels.

The heuristic monitors the fraction of potentially noisy sam-
ples in each conditioning class, and verifies that the fraction is
consistent with the channel parameters. To determine whether

is noisy given that , we measure the frac-
tion of times occurs in and , where is
the subset of values in that are farthest away from (the
exact value of is not critical; has worked well
in our experiments).

The rationale of the heuristic is that, due to the smoothness
of images, is unlikely if , so the measured
frequency of occurrence of is a good estimate of its probability
due to noise in cluster . This estimate can then be compared
against the probability of due to noise on the channel at
hand (i.e., in the S&P case, where only and
are potential noisy values, and in the -ary sym-
metric case, where a corrupted sample can assume any value
from ). Assuming the conditioning class is sufficiently popu-
lated, a significant deviation of the count from its expected value
(measured, say, in multiples of its standard deviation) is strong
evidence for the violation of the statistical assumptions of the
denoiser. When such a situation is detected, the iDUDE will re-
frain from making corrections for samples in the affected class,
and will leave the value from the prefiltered image untouched,
while samples in “healthier” classes will continue to be refined
in the iterative procedure. A threshold of ten to fifteen standard
deviations has proven effective in our experiments.

Fig. 7 illustrates the effectiveness of the heuristic. The figure
plots the PSNR of the denoised image as a function of the
number of iterations for one of the S&P denoising experiments
of Section V. When the heuristic is not used, there is a large
drop in PSNR in the fifth iteration. The drop is prevented when
the heuristic is used, and the PSNR follows a concave curve that
stabilizes after a few iterations, making the choice of stopping
point for the iteration far less critical.

In more generality, when all the offdiagonal entries in each
column of the channel matrix are equal, which is the case
for the two nonadditive channels studied here, the probability of

given (and the cluster ) is clearly the common
offdiagonal value in column . For other channels, it may be
possible to obtain useful bounds that still allow for meaningful
detection of deviations from the expected noise behavior.

Notice that during the first application of the iDUDE, the
previously mentioned procedure can be used to estimate the
channel parameters, rather than compare against them. Thus,
the assumption of known channel parameters is not essential in
these cases.

D. Implementation for S&P Noise

The channel transition matrix for S&P noise, and its inverse,
are given by

...
...

. . .
...

...

...
...

...
. . .

...

(17)

The matrices are well conditioned, except when approaches
one.9

1) Prefiltering: The iDUDE implementation for the S&P
channel uses a prefilter based upon a modified selective me-
dian (MSM) filter for the first step of the procedure of Fig. 5.
The filter is applied only to samples valued 0 and . It
estimates the sample at the center of a 5 5 window by com-
puting the median of a set of 25 values, namely, the noncenter
sample values in the window and their average. The prefilter is
improved by running the MSM filter iteratively (still within the
first step in Fig. 5), using the MSM output of one iteration as
the input to the next, and refining the estimate for the samples
valued 0 and in the original noisy image. This iteration
generally stabilizes, and can be stopped when the distance
between the outputs of one iteration and the next falls below a
certain threshold (which is not very critical). We refer to this
improved prefilter as an iterated MSM, or, in short, IMSM. The
improvement of IMSM over MSM is illustrated in Table III and
Fig. 9 of Section V.

The output from the IMSM prefilter is used as input to the first
application of the iDUDE in the second stage of the procedure
of Fig. 5.

2) Prediction and Context Model: The WGT predictor and
context model are used.

3) Model Estimation: With the matrix of (17), the up-
date in Step 2e of Fig. 3 [with defined in (12)] consists
of adding to , and subtracting

9We report on the symmetric case for simplicity. Asymmetric cases where
the probability of switching to 0 or� � � are not necessarily equal are easily
handled by adjusting the matrices in (17) accordingly.



from and . Notice that the latter two
subtractions depend upon the predicted value , but not on .
Thus, the computation of the statistic can be implemented by
just maintaining, for each conditioning class , a conventional
histogram of occurrences of differences , together with a
histogram of predicted values , each requiring one scalar in-
crement per sample. After scanning the image in the first pass
of the iDUDE, the counts in the two histograms suffice to derive

.
4) Denoising Rule: For the norm, ignoring integer con-

straints, the minimum in the iDUDE decision rule (15) is at-
tained by the expectation, , of under . For

, writing explicitly as , where
is an appropriate normalization coefficient, and substituting the
first column of from (17) for , we obtain

where is the expectation of under and
. The reconstructed value for is obtained

by rounding to the nearest integer (which gives the precise
integer solution to (15)). An analogous formula can be derived
for the case when .

E. Implementation for the -ary Symmetric Channel

The -ary symmetric channel is defined by a transition prob-
ability matrix , with entries

(18)

This matrix is generally well-conditioned (except near
), and its inverse is given by

(19)

1) Prefiltering: A simple median filter on a 5 5 window
(modified, as in Section IV-D-1, to include the average of the 24
noncenter samples in lieu of the center) is used for the first step
of the procedure in Fig. 5.

2) Prediction and Context Model: The WGT predictor and
context model are used.

3) Model Estimation: It follows from (19) that the column
with index in can be written in the form

(20)

where is an indicator vector as defined in Section III, and
is an all-one column of dimension . Thus, to implement

the update in Step 2e of Fig. 3 in the case of the -ary sym-
metric channel it suffices, again, to maintain a conventional his-
togram of occurrences of differences , together with a
histogram of predicted values , from which the statistic is
obtained at the end of the first pass of the iDUDE over the image.

4) Denoising Rule: With the entries of given in (18), the
computation of the expectation of under for the

-ary symmetric channel yields

where is defined as before, and . The
iDUDE estimate for is the integer closest to .

F. Implementation for Gaussian Noise

We consider the quantized additive white Gaussian channel,
where real-valued noise is added (indepen-
dently) to each clean symbol to produce , the ob-
served output being the value closest to in . Thus, letting

denote the error function [37], the entries of the channel
transition matrix are given by

otherwise.
(21)

As discussed in Section III-F, the matrix is generally ill-
conditioned, and we will not attempt to utilize its inverse (see
Model Estimation in the following).

1) Prefiltering: The iteration of Fig. 5 includes at most two
applications of the iDUDE, using a trivial prefilter (i.e., is the
identity). In principle, prefiltering and iteration are optional for
the Gaussian channel, since our assumptions A1–A4 are still ef-
fective for images affected by Gaussian noise (especially in the
high SNR regime), and therefore these assumptions can be used
for modeling and doing channel inversion to obtain

as in the basic DUDE. This is reflected in our results
in Section V, where we use trivial prefiltering and no iteration
for the high SNR regime. One round of iteration does help in the
low SNR regime, but the gains are relatively modest. Now, since
our results for this channel are preliminary (as will be discussed
in Section V), a state of the art denoiser for Gaussian noise such
as the one in [12], used as a prefilter, would have resulted in im-
proved performance. However, the use of such a prefilter would
not reflect the spirit of the (lightweight) rough denoising step.

2) Prediction and Context Model: Two variants of the
iDUDE framework were implemented. Both use the WGT
predictor of Section IV-A. The first variant uses also the WGT
context model. This variant is fast, and performs well in the
high SNR regime.

In the second variant, contexts are first brought to
differential canonical form (see Fig. 3). Taking the

as 24-dimensional real vectors, the contexts are initially
classified into clusters by means of the
Linde–Buzo–Gray (LBG) vector quantization algorithm [38],
with the metric used to measure distance between contexts.



TABLE I
IMAGES USED IN THE EXPERIMENTS. LEGEND: TR: TRADITIONAL IMAGES; JLS: IMAGES FROM THE JPEG-LS BENCHMARK SET;

Y: Y CHANNEL OF YCrCb COLOR SPACE; K: K CHANNEL OF CMYK COLOR SPACE

Fig. 8. Evolution of PSNR versus number of iterations for a subset of the image
test set under S&P noise with � � ���. Iteration number 0 corresponds to the
initial prefiltering stage (IMSM filter).

The activity level of a context is defined in this case as
, where is the empirical variance of samples in the

context. Conditioning classes are defined by
uniformly quantizing the activity level. The set of prediction
classes is then defined as ,
namely, a total of classes. The LBG variant of
the context model is slower, but performs better, and is the
preferred mode of operation, at lower SNR.

3) Model Estimation: We follow the parametric approach
outlined in Section III-F, but with a simpler estimation pro-
cedure for the cluster-dependent parameters and of the
(discrete) Laplacian component of the LG model for .
First, denoting the variance of the Laplacian by , we observe
that by the definition of the LG model, its variance is given
by . Given the parameters of the
Laplacian, takes the form

(22)

where denotes the fractional part of . In the first pass of the
iDUDE we compute the empirical mean, , and variance, ,
of the differences observed in each class . Next,
we estimate the variance of the Laplacian component for
as

(23)

where denotes the fractional part of and we recall that
is a parameter that accounts for the number of samples partic-
ipating in the weighted average in the WGT predictor (we use

). The maximum in (23) accounts for the fact that an esti-
mate for the variance could be smaller than the
minimum possible variance of the discrete Laplacian

(obtained for , see (22)), due to statistical fluctuations or
an inaccurate choice of the parameter . Finally, given and

, we use (22) to solve for an estimate .

V. RESULTS

In this section, we present results obtained with the iDUDE
on images corrupted by simulated S&P, -ary, and Gaussian
noise. For each type of noise, we compare our results with those
of a sample of recent denoising algorithms from the literature
for which an objective basis for comparison was available, and
including in all cases the schemes with the best available pub-
lished results as of the writing of this paper. Our iDUDE ex-
periments are based upon a research prototype implementation
written in C++, and run on a vintage 2007 Intel-based personal
computer.10 For a very rough complexity reference, we mea-
sured the running time of one iDUDE iteration in this imple-
mentation (using the WGT context model) on the 2048 2560
image Bike at approximately 7 s, for a throughput of approxi-
mately 730 Kpixels/s. Running times for a given context model
do not vary significantly with the noise type or level. As will
be shown in Fig. 8 and its discussion, the number of iterations
necessary to approach the best performance is generally small.

The images used in the experiments are listed in Table I. The
“very small” heading in the table refers to a set of 24 images of
dimensions 384 256 (referred to as ) available at [36],
for which results of denoising with the state of the art scheme of
[28] at various levels of S&P noise are available. The “small”
(512 512) images in the table are from the set traditionally
used in the image processing literature.11 Since the images in
either set are rather small by today’s standards, we include also
larger images from the benchmark set used in the development
of the JPEG-LS standard [5].

We evaluate denoising performance by measuring peak
signal-to-noise ratio (PSNR) between the denoised image and
the original clean image. Table II summarizes the iteration
and model size parameters used for the various experiments
and noise types. The parameters, and the general iDUDE
configuration for each noise type, were defined in Section IV.
We use one set of iteration and model size parameters for each
combination of image size category, noise type, and noise level,
rather than parameters optimized for each individual image.
The fixed predictor parameters and (cf. Appendix B) were

10Specifically, Intel(R) Xeon(R) 5160 CPU, 3 GHz clock speed, 3 GB RAM,
running Linux.

11We use the versions available at the DenoiseLab site [39]. Additionally, to
allow comparison with [28] also on a 512 � 512 image, we use the (different)
version of the Lena image reported on in [28], which we refer to as ���� .
We are not aware of other images for which a reliable comparison with [28] is
possible.



TABLE II
PARAMETERS USED IN THE EXPERIMENTS. �: NUMBER OF iDUDE ITERATIONS; � , � : MODEL SIZE PARAMETERS

(CF. SECTION IV-A); � : NUMBER OF LBG CLUSTERS (SECTION IV-F-2)

TABLE III
RESULTS FOR S&P NOISE. MSM: MODIFIED SELECTIVE MEDIAN (CF. SECTION IV-D-1); IMSM: ITERATED MSM; CHN05:

THE DENOISER OF [28]. COMPARISON WITH CHN05 DISPLAYED SEPARATELY

set as follows: of maximum gradient magnitude in
the context, for the S&P channel, for
the -ary symmetric channel; for the Gaussian channel,
and were optimized to minimize the observable prediction
RMSE for each noisy image, with varying between 5% and
17%, and between 0 and 0.05. This is one case where it is
“legitimate” to optimize the parameter for each image, since
the optimization is based upon observable data.

A. S&P Noise

The traditional test images (e.g., Boat, Barbara, Lena), con-
tain very few, if any, pure black (value 0) or pure white (value

) samples. Therefore, for these images, the S&P channel
behaves like an erasure channel, and noisy samples are easily
identified. We include the images Toolsk and Womank to test
the iDUDE in a more challenging situation. These images have
significant amounts of pure black and white pixels, both in large
solid regions, and in isolated occurrences scattered across the
image.

Table III summarizes the results for the S&P channel. Visual
examples are given in Fig. 9. For this channel, we compare our
results to those of [28] on the variant of the Lena image,
and on the mentioned from [36]. For the latter, for brevity,
we list the average PSNR over the set of images (as done also
for the results reported in [28]). The scheme of [28] (referred
to in the table as CHN05) was selected for comparison as it
presents, to the best of our knowledge, the best published re-
sults for S&P noise available in the literature. In all cases, we

compare also with the modified selective median (MSM) filter
described in Section IV-D-1, and its iterated version (IMSM).
The results show iDUDE outperforming [28] in all cases, and
by significant margins in the case of the image. The ad-
vantage of iDUDE diminishes as images become very small and
noise levels become high, as expected from a statistical con-
text-model-based scheme.

Fig. 8 shows the evolution of PSNR with the number of it-
erations for a subset of the test images, under S&P noise with

. The figure shows that, typically, most of the gains
in performance are obtained in the first few iterations (this fact
is also verified in Fig. 7, which corresponds to the Womank
image with 10% S&P noise). Thus, the number of iterations pro-
vides for a graceful tradeoff between running time and denoising
performance.

B. -ary Symmetric Noise

Table IV summarizes our results for the -ary symmetric
channel. The results are compared with those of the median pre-
filter, and, for the Lena image, with those published for the state
of the art scheme in [23] (referred to in the table as ROAD); a
visual comparison is presented in Fig. 10. As before, iDUDE
significantly outperforms the references.

C. Gaussian Noise

Table V summarizes our results for the Gaussian channel,
comparing with the state of the art Block Matching 3-D



Fig. 9. Denoising of Boat affected by S&P noise (a 100 � 100 image segment is shown). (a) Noisy, � � ���; (b) MSM (30.6 dB); (c) IMSM (31.2 dB); (d)
iDUDE (35.3 dB); (e) Noisy, � � ���; (f) MSM (16.4 dB); (g) IMSM (25.7 dB); (h) iDUDE (28.9 dB).

TABLE IV
RESULTS FOR � -ARY SYMMETRIC NOISE. MED: MEDIAN OF A 5 � 5 WINDOW; ROAD: RANK-ORDERED ABSOLUTE DIFFERENCES [23].

COMPARISON WITH ROAD FOR THE LENA IMAGE DISPLAYED SEPARATELY

(BM3-D) [12], and with the Nonlocal Means (NLM) scheme
of [4].12

We report results for the high SNR regime , and
the low SNR regime . For the high SNR regime,
we include results for the two variants of DUDE discussed in
Section IV-F-2, namely, one based upon LBG clustering, and
one based upon the WGT model (referred to as iDUDE ). The
iDUDE variant is competitive at this noise level, and achieves
the speeds mentioned previously. In the low SNR regime,
the LBG-based scheme has a more significant performance
advantage, and we report only on this variant. This work has
focused on demonstrating the wide applicability of the iDUDE
framework for various types of noise and images, rather than
optimizing performance specifically for the Gaussian channel,
which is work in progress. Although our results for this channel
do not reach the performance of [12], they are competitive with
those obtained with the denoiser of [4], comparing favorably

12Results for the NLM algorithm were obtained, for � � �, using the al-
gorithm described in [4], and for � � ��, using the slightly different version
of the algorithm made available in Matlab by the authors [40]. These versions
were found to give the best PSNRs for the respective values of �. In all cases,
the averaging window was set to 21 � 21, the similarity window to 7 � 7, and
the parameter � was optimized for each image and �. Results for BM3-D were
obtained with the Matlab code available at [41].

at , and somewhat below at . Fig. 11 shows
denoising error images (i.e., images of differences between
denoised and clean samples, recentered at brightness level 128)
for a portion of the Boat image at . The figure shows
that iDUDE and NLM achieve the same PSNR, with iDUDE
showing better recovery of edges (which are less marked in
the corresponding image) and NLM better performance on
smoother areas. BM3-D does well on both types of image
regions, and has better performance overall.

VI. CONCLUSION

We have presented a framework for grayscale image de-
noising based upon the discrete universal denoiser DUDE
of [2]. The framework overcomes the practical limitations,
stemming from the model cost issues associated with large
alphabets and limited sizes of image data, by exploiting prior
knowledge on the structure of images, as previously done
in lossless image compression, and confirms an important
principle in the practical use of universal schemes: Algorithms
should be as universal as necessary for the application at hand
but not more—they should not be expected to learn what is
already known in advance. In that sense, the full universality of
the basic DUDE in the class of stationary sources is excessive



Fig. 10. Denoising of Lena affected by� -ary symmetric noise with � � ��� (a 160� 160 image segment is shown). (a) Noisy, � � ��� (16.2 dB); (b) MED:
median of a 5 � 5 window (30.1 dB); (c) iDUDE (36.9 dB).

Fig. 11. Denoising of Boat affected by Gaussian noise with � � ��. A 128� 128 portion of the denoising error image is shown for each denoiser. The grayscale
value in location � of each error image shown is �� � �� � � 	 
 ����, where the values � and � correspond, respectively, to the denoised and the clean sample
in location �, and the square brackets denote clamping to the range [0, 255] (multiplication by eight enhances visibility of the predominant small-magnitude error
values). (a) Clean; (b) BM3-D (33.8 dB); (c) NLM (32.9 dB); (d) iDUDE (32.9 dB).

TABLE V
RESULTS FOR GAUSSIAN NOISE. BM3-D: BLOCK MATCHING 3-D [12]; NLM:

NON LOCAL MEANS [4]; iDUDE: iDUDE USING LBG CONTEXT CLUSTERING;
iDUDE : FAST VARIANT USING WGT CONTEXT CLUSTERING

for grayscale images. Instantiations of the enhanced iDUDE
framework were shown to be effective on a variety of image
and noise types, achieving state of the art denoising perfor-
mance for impulse channels (S&P and -ary symmetric), and
performance competitive with modern denoising schemes for
the Gaussian channel. Further improvements in performance
for the latter is a subject of ongoing research.

The examples presented in the paper suggest that the fol-
lowing general steps are required for instantiating iDUDE for
a different noise channel , characterized by a channel transi-
tion matrix .

1) Determine whether the image assumptions A1–A4 of
Section III are effective for images affected by . If
not, choose an appropriate prefilter for , for use in a
prefiltering and iteration loop as described in Fig. 5. If
the assumptions are still effective for , prefiltering and
iteration might not be essential (as in the case of Gaussian
noise).

2) Determine if a numerically stable inverse can be ob-
tained. If so, the inverse can be used to define an estimation
matrix as in (12). Otherwise, an alternative channel in-
version method, such as those discussed in Section III-F
might be appropriate.

3) Design a context model and aggregation strategy appro-
priate for images affected by , and possibly prefiltered.
For example, if gradient information remains reliable
under and prefiltering, a context model similar to WGT
(cf. Section IV-A) might be appropriate. Otherwise, as
in the low-SNR Gaussian channel case, an LBG-based
context model might work better. In addition, some pa-
rameters of the context model can be made to depend upon
the strength, and not just the type, of the noise (e.g., the
parameters , in WGT).

Of course, given a specific channel and matrix , further
optimizations are likely to emerge as a result of experimentation
and analysis.

APPENDIX A
LG DISTRIBUTION

To obtain simpler expressions, we approximate the discrete
LG distribution as follows. Consider a continuous, infinitely
supported Laplacian distribution with probability density func-
tion (PDF) parametrized as , for

and, without loss of generality (up to integer transla-
tion of the support), . Let , and let

be a normal random variable of zero mean and variance .



Then, letting , the cumulative density function (CDF)
for is given by

To obtain the PDF for a discrete LG random variable, we write
for

values of away from the borders of the alphabet range, and
appropriate accumulation and adjustment at the borders.

APPENDIX B
DETAILS OF THE WGT PREDICTOR AND CONTEXT CLASSIFIER

We recall from Section IV that each context is decomposed
into eight (overlapping) wings labeled , , , , , ,

, and . We recall also that denotes the value of the
sample in coordinate of the neighborhood in Fig. 6. We
compute a weighted average, , of each wing, as follows:

(in each linear combination, the coefficient of a sample is in-
versely proportional to its distance to the center of the neigh-
borhood). Additionally, we compute a gradient magnitude, ,
for each wing, as follows:

(diagonal gradients are scaled by ).

The fixed prediction value is computed as a linear combi-
nation of a subset of the wing averages, with positive weights
that decrease with the respective wing gradient, but drop to zero
for wings whose gradient magnitude exceeds the minimum gra-
dient in the context by more than a certain gradient threshold ,
which is a parameter of the predictor. Specifically, defining

, and
, wing weights are determined as follows:

otherwise.

Here, is a parameter of the predictor that controls the effect
of the gradient magnitudes on the weights; smaller values of

make the weights vary less with the gradients, with uniform
weighting when . We will tend to use smaller values of
when the noise level is high: gradients are less “credible” under
those circumstances. Finally, the fixed prediction for the context
is computed as

(24)

Horizontal/vertical wing gradients are also used to compute
the activity level value of the context, as follows:
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