Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41079
Cómo citar
Título: | An algorithm to solve optimal stopping problems for onedimensional diffusions |
Autor: | Crocce, Fabián Mordecki, Ernesto |
Tipo: | Artículo |
Fecha de publicación: | 2022 |
Resumen: | Considering a real-valued diffusion, a real-valued reward function and a positive discount rate, we provide an algorithm to solve the optimal stopping problem consisting in finding the optimal expected discounted reward and the optimal stopping time at which it is attained. Our approach is based on Dynkin’s characterization of the value function. The combination of Riesz’s representation of α-excessive functions and the inversion formula gives the density of the representing measure, being only necessary to determine its support. This last task is accomplished through an algorithm. The proposed method always arrives to the solution, thus no verification is needed, giving, in particular, the shape of the stopping region. Generalizations to diffusions with atoms in the speed
measure and to non smooth payoffs are analyzed |
Editorial: | ALEA |
EN: | Latin American Journal of Probability and Mathematical Statistics, 2022, 19: 1353–1375 |
Citación: | Crocce, F y Mordecki, E. "An algorithm to solve optimal stopping problems for onedimensional diffusions". Latin American Journal of Probability and Mathematical Statistics. [en línea] 2022, 19: 1353–1375. 23 h. DOI:10.30757/ALEA.v19-54 |
ISSN: | 1980-0436 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
19-54.pdf | 594,02 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons