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Abstract. Considering a real-valued diffusion, a real-valued reward function and a positive discount
rate, we provide an algorithm to solve the optimal stopping problem consisting in finding the optimal
expected discounted reward and the optimal stopping time at which it is attained. Our approach is
based on Dynkin’s characterization of the value function. The combination of Riesz’s representation
of α-excessive functions and the inversion formula gives the density of the representing measure,
being only necessary to determine its support. This last task is accomplished through an algorithm.
The proposed method always arrives to the solution, thus no verification is needed, giving, in
particular, the shape of the stopping region. Generalizations to diffusions with atoms in the speed
measure and to non smooth payoffs are analyzed.

1. Introduction

Given a diffusion X = {Xt : t ≥ 0} taking values in an interval I ⊂ R, a non-negative continuous
reward function g : I → R, and a discount factor α > 0, consider the optimal stopping problem
consisting in finding the value function V (x) and the optimal stopping rule τ∗, such that

V (x) = Ex

(
e−ατ

∗
g(Xτ∗)

)
= sup

τ∈T
Ex
(
e−ατg(Xτ )

)
. (1.1)

Here T is the class of stopping times and we consider g(Xτ ) = 0 if τ =∞ (see section 2 for defini-
tions). Optimal stopping for real-valued diffusions is a well established and rich area of research. It
can be inscribed into the class of markovian stopping problems, existing many different approaches
to solve them. One of the most popular ones, the free boundary approach (see Peskir and Shiryaev
(2006) with the historical comments in pp. 50-52 and the corresponding references), when applica-
ble, is very effective and consists in two steps: the solution of a free boundary differential equation to
find a candidate solution; and the verification (usually through stochastic calculus) that the candi-
date is the true solution. The celebrated smooth fit condition becomes a key tool in this framework.
A second approach we mention is Dynkin’s characterization of the value function (Dynkin, 1963).
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It was used for instance by Taylor (1968), and has a variation proposed in Dayanik and Karatzas
(2003) (where concavity is used instead of excesiveness). Other several different approaches can be
found in Chapter IV of Peskir and Shiryaev (2006).

Under the conditions assumed in this paper (see section 5), the optimal stopping rule exists and
has the form

τ∗ = inf{t ≥ 0: Xt ∈ S}, (1.2)

where the stopping region S is the closed set

S = {x ∈ I : V (x) = g(x)}. (1.3)

The continuation region is C = I \ S. A key role in our proposal is played by the negative set

N = {x ∈ I : (α− L)g(x) < 0}.

where L is the infinitesimal generator of X.
Regarding applications, it must be noted that in most of the problems where a solution can be

found, the continuation region C is either a half-line, giving one-sided solutions, or a finite interval,
giving rise to a two-threshold policy (or a two-sided solution). The first situation appears typically
in perpetual American options (see for instance McKean (1965) and Merton (1973)), also in the
problem of disruption for a Wiener process (see section 4.4 in Shiryaev (2008)). The second one
appears in the case of sequential testing of two simple hypotheses of the mean of a Wiener process
(see section 4.2 in Shiryaev (2008)), in the quickest detection problem (Shiryaev, 2010), and also
in the pricing of a perpetual straddle or strangle option (Gerber and Shiu, 1996). The analysis of
continuation intervals appears in Alvarez (2001) under restrictions on the shape of the continuation
region. More recent references on one-sided and two-sided solutions are for instance Rüschendorf
and Urusov (2008) and Lempa (2010). Lamberton and Zervos (2013) obtain verification results in
a framework of weak solutions of SDE with measurable coefficients and a state dependent discount.

As we mentioned above, the continuation region of solvable problems are usually half lines or
intervals. More important, the shape of this set should be known in advance in order to solve the
problem. Solved cases with different continuation regions are seldom treated in the literature, as
in order to apply the smooth pasting condition, one has to guess first the structure of this set.
Furthermore, and perhaps more relevant to our discussion, examples are usually solved based on
verification results (see the discussion in the Introduction in Lamberton and Zervos (2013) with the
references therein).

The method that we propose in the present paper consists in the following steps:
(1) Apply Dynkin’s characterization to obtain that the value function is the minimal excessive

function that is a majorant of the reward.
(2) Represent this excessive function as an integral of the Green kernel of the process w.r.t. a

representing measure.
(3) Identify the support of this representing measure as the stopping region S, based on the fact

that the value function is harmonic on the continuation region.
(4) Identify the density (w.r.t. the speed measure) of the representing measure through the

inversion formula.
(5) Determine the support S of this measure through an algorithm, constructing C = I \ S as

an enlargement of the set N .
The proposed method departs from the scale function and speed measure (that determine the gen-
erator L) and the increasing and decreasing solutions of the equation αu = Lu (that determine the
Green kernel), and gives the complete solution of the problem without need of further verification.
The main restriction of the method is that the negative set should be a finite union of intervals, i.e.
N =

⋃n
i=1Ni. It is important to note that N is directly computed from the data of the problem.

The steps of the algorithm to construct the set C are the following:
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(1) (enlargment) for each Ni construct the largest possible interval Ci ⊃ Ni contained in the
continuation region (see Condition 2.3);

(2) if Ci are pairwise disjoint intervals then C =
⋃
iCi;

(3) else (merge), denote byNi each connected component of
⋃
iCi and return to step 1. (Observe

that the number of intervals strictly decreases.)
As a consequence, the algorithm’s output are the connected components of the continuation region

(whose number is smaller or equal than n) determining if the problem is one-sided, two-sided, or
other (i.e. the continuation region is the union of several intervals). The value function is then
written as an integral of the Green kernel w.r.t. the just obtained measure, and this integral gives
the classical form of value function as a linear combination of the fundamental solutions in each
continuation interval.

The representation of excessive functions in optimal stopping of diffusions was initiated by Salmi-
nen (1985), who represents the value function in terms of the Martin kernel. Afterwards, Mordecki
and Salminen (2007) use the Green kernel for optimal stopping of Hunt and Lévy processes. The
identification of the representing measure through the inversion formula was obtained in Crocce
(2014), and appears in Crocce and Mordecki (2014) for one-sided problems, and in Christensen
et al. (2019) for multidimensional diffusions. It can be traced back to formula (8.30) in Dynkin
(1969), for the cases when the limit therein can be interchanged with the integral. More recently,
also based in representation methods, disconnected stopping regions where obtained for optimal
stopping problems for diffusions with discontinuous coefficients in Mordecki and Salminen (2019a,b).

The rest of the paper is as follows. In section 2 we introduce the necessary definitions and the
main result, in section 3 we discuss possible generalizations in two separate directions: diffusions
with atoms in the speed measure, and non-smooth (but still continuous) rewards. Section 4 presents
the implementation of the algorithm and contains three examples, and section 5 contains the proof
of the main result.

2. Main result

Consider a conservative and regular one-dimensional diffusion X = {Xt : t ≥ 0}, in the sense of
Itô and McKean (1974) (see also Borodin and Salminen (2002)). The state space of X is denoted
by I, an interval of the real line R with left endpoint ` = inf I and right endpoint r = sup I, where
−∞ ≤ ` < r ≤ ∞. The boundaries can be of any kind but killing. Denote by Px the probability
measure associated with X when starting from x, and by Ex the corresponding mathematical
expectation. The set of stopping times T is considered with respect to the usual augmentation of
the natural filtration generated by X (see I.14 in Borodin and Salminen (2002)).

Denote by L the infinitesimal generator of the diffusion X, and by D(L) its domain. For any
stopping time τ and for any f ∈ D(L) the following discounted version of the Dynkin’s formula
holds:

f(x) = Ex

(∫ τ

0
e−αt(α− L)f(Xt)dt

)
+ Ex(e−ατf(Xτ )). (2.1)

The resolvent of the process X is the operator Rα defined by

Rαu(x) =

∫ ∞
0

e−αtEx u(Xt)dt,

applied to a function u ∈ Cb(I) = {u : I → R, u is continuous and bounded}. The image of the
operator Rα is independent of α > 0 and coincides with the domain of the infinitesimal generator
D(L). Moreover, for any f ∈ D(L), Rα(α − L)f = f , and for any u ∈ Cb(I), (α − L)Rαu = u.
In other terms, Rα and α − L are inverse operators (see Prop. VII.1.4 in Revuz and Yor (1999)).
Denoting by s and m the scale function and the speed measure of the diffusion X respectively, we
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have that, for any f ∈ D(L), the lateral derivatives with respect to the scale function exist for every
x ∈ (`, r). Furthermore, they satisfy

∂+f

∂s
(x)− ∂−f

∂s
(x) = m({x})Lf(x), (2.2)

and the following identity holds for z > y:

∂+f

∂s
(z)− ∂+f

∂s
(y) =

∫
(y,z]
Lf(x)m(dx).

This last formula allows to compute the infinitesimal generator of f at x ∈ (`, r) by the Feller’s
differential operator (Feller, 1957)

Lf(x) =
∂

∂m

∂+

∂s
f(x). (2.3)

Given a function u : I → R, and x ∈ (`, r) we give to Lu(x) the meaning given in (2.3) if it
makes sense. We also define Lu(`) = limx→`+ Lu(x), if the limit exists. There exist two continuous
functions ϕα : I 7→ R+ decreasing, and ψα : I 7→ R+ increasing, solutions of αu = Lu, such that any
other continuous function u is a solution of the differential equation if and only if u = aϕα + bψα,
with a, b in R. Denoting by hz = inf{t : Xt = z} the hitting time of level z ∈ I, we have

Ex(e−αhz) =


ψα(x)
ψα(z)

, x ≤ z,
ϕα(x)
ϕα(z)

, x ≥ z.
(2.4)

The functions ϕα and ψα, though not necessarily in D(L), also satisfy (2.2) for all x ∈ (`, r), so
that in case m({x}) = 0, the derivative at x of both functions with respect to the scale exists. The
α-Green function of X is defined by

Gα(x, y) =

∫ ∞
0

e−αtp(t;x, y)dt,

where p(t;x, y) is the transition density of the diffusion with respect to the speed measure m(dx)
(this density always exists, see Borodin and Salminen (2002)). The Green function may be expressed
in terms of ϕα and ψα as follows:

Gα(x, y) =

{
w−1α ψα(x)ϕα(y), x ≤ y,
w−1α ψα(y)ϕα(x), x ≥ y,

(2.5)

where wα, the Wronskian, given by

wα =
∂ψ+

α

∂s
(x)ϕα(x)− ψα(x)

∂ϕ+
α

∂s
(x),

is positive and independent of x (Borodin and Salminen (2002)). For general reference on diffusions
and Markov processes see Borodin and Salminen (2002); Itô and McKean (1974); Revuz and Yor
(1999); Dynkin (1965); Karatzas and Shreve (1991).

A non-negative Borel function u : I → R is called α-excessive for the process X if
e−αtEx(u(Xt)) ≤ u(x) for all x ∈ I and t ≥ 0, and limt→0Ex(u(Xt)) = u(x) for all x ∈ I. A
0-excessive function is said to be excessive. Dynkin’s characterization (Dynkin, 1963) states that, if
the reward function is lower semi-continuous, V is the value function of the non-discounted optimal
stopping problem with reward g if and only if V is the least excessive function such that V (x) ≥ g(x)
for all x ∈ I. Applying this result to a killed process (Crocce and Mordecki, 2014), we obtain that
V , the value function of the problem (1.1), is characterized as the least α-excessive majorant of g .

A key feature of our proposal is the representation of excessive functions as integrals of the Green
kernel. The Riesz’s representation of an α-excessive function states that a function u : I → R is
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α-excessive if and only if there exist a non-negative Radon measure µ on [`, r] such that

u(x) =

∫
(`,r)

Gα(x, y)µ(dy) + µ({`})ϕα(x) + µ({r})ψα(x). (2.6)

Furthermore, the previous representation is unique. The measure µ is called the representing mea-
sure of u. Formula (2.6) is obtained from II.29 in Borodin and Salminen (2002).

We next formulate our main result in a smooth framework: the value function g satisfies the
inversion formula (in particular Lg(x) must be defined for all x ∈ I):

g(x) =

∫
I
Gα(x, y)(α− L)g(y)m(dy); (2.7)

and the speed measure has no atoms. The proof of this result is deferred to section 5. A discussion
of possible generalizations in presented in section 3. Denote

σ(dy) = (α− L)g(y)m(dy). (2.8)

Theorem 2.1. Consider a diffusion X whose speed measure has no atoms. Assume that the reward
function g satisfies the inversion formula (2.7) and that the negative set is a finite union of n ≥ 1
disjoint intervals, i.e.

N =
n⋃
i=1

Ni.

Then, the value function of the OSP is

V (x) =

∫
S
Gα(x, y)σ(dy), (2.9)

where the continuation region C = I \ S is a finite union of 1 ≤ m ≤ n disjoint intervals Ci, i.e.

C =

m⋃
i=1

Ci,

s.t. N ⊂ C, and
(a) if ` < inf Ci, then

∫
Ci
ϕα(y)σ(dy) = 0,

(b) if supCi < r, then
∫
Ci
ψα(y)σ(dy) = 0,

(c) for x ∈ Ci,
∫
Ci
Gα(x, y)σ(dy) ≤ 0.

Furthermore, the continuation region C can be found by Algorithm 2.1, to be presented further on.

Remark 2.2. If x ∈ Ci = (`i, ri), according to (2.9), we have

V (x) =

∫
I\C

Gα(x, y)σ(dy)

=

∫
(I\C)∩{x<`i}

w−1α ψα(y)ϕα(x)σ(dy) +

∫
(I\C)∩{x>ri}

w−1α ψα(x)ϕα(y)σ(dy)

= ki1ϕα(x) + ki2ψα(x).

Applying the representation Lemma 5.2 we know that V (`i) = g(`i) and V (ri) = g(ri), obtaining

ki1 =
g(ri)ψα(`i)− g(`i)ψα(ri)

ψα(`i)ϕα(ri)− ψα(ri)ϕα(`i)
, (2.10)

and

ki2 =
g(`i)ϕα(ri)− g(ri)ϕα(`i)

ψα(`i)ϕα(ri)− ψα(ri)ϕα(`i)
. (2.11)
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In the particular case in which `i = ` we have ki1 = 0 and ki2 = g(ri)/ψα(ri), and if ri = r then
k1 = g(`i)/ϕα(`i) and k2 = 0. We have then the classical alternative formula

V (x) =

{
g(x), for x /∈ C,
ki1ϕα(x) + ki2ψα(x), for x ∈ Ci : i = 1 . . .m.

(2.12)

The coefficients in (2.10) and (2.11) appeared (in a slightly different form) in Alvarez (2001), and
also in Lempa (2010), and Lamberton and Zervos (2013).

As we mentioned above, the continuation region is constructed as an enlargement of the negative
set, and this is done by enlarging each of the intervals Ni of N . Introduce P = I \ N the positive
part of the support of σ, and denote by σ+(dx) the measure

σ+(dx) := σ(dx)1P(x),

where σ is given in (2.8), and, for an arbitrary interval D ⊂ I define the signed measure σD by

σD(dx) = 1D(x)σ(dx) + σ+(dx)1I\D. (2.13)

Observe that σD is a positive measure outside D, equal to σ in D.
The following statement specifies what are the conditions that the enlarged interval C should

satisfy.

Condition 2.3. We say that the pair of intervals (N,C) : N ⊆ C ⊆ I satisfy Condition 2.3 if the
following assertions hold:
(i) both,

∫
N ϕα(x)σ(dx) ≤ 0 and

∫
N ψα(x)σ(dx) ≤ 0;

(ii) if ` < inf C, then
∫
C ϕα(x)σN (dx) = 0;

(iii) if supC < r, then
∫
C ψα(x)σN (dx) = 0;

(iv) for every x ∈ C,
∫
C Gα(x, y)σN (dy) ≤ 0.

The algorithm to construct the continuation region follows.

Algorithm 2.1. (Starting from a subset of the continuation region, in subsequent steps, increase
the considered subset until finding the actual continuation region.)

BS. (base step) Consider disjoint intervals N1, . . . , Nn ⊆ I such that

N = {x ∈ I : (α− L)g(x) < 0} =

n⋃
i=1

Ni.

Consider for each i, the interval Ci such that (Ni, Ci) satisfies Condition 2.3 (this can be
done in virtue of Lemma 5.3). Define

Θ = {(Ni, Ci) : i = 1 . . . n} ,

and go to the iterative step (IS) with Θ.
IS. (iterative step) At this step we assume given a set Θ of pair of intervals satisfying Condition

2.3. We assume the notation1

Θ = {(Ni = (ai, bi), Ci = (āi, b̄i)) : i = 1 . . . n},

with ai < aj if i < j (the intervals Ni are ordered) and bi < ai+1 (the intervals Ni are
disjoint)
– If for some j, Cj = I, the algorithm is finished and the continuation region is I.

1we remark that at different moments the algorithm execute this step, the notation refers to different objects, e.g.
the set Θ is not always the same set.
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– Else, if the intervals Ci are pairwise disjoint, the algorithm is finished and the contin-
uation region is

C =
n⋃
i=1

Ci

– Else, if āj = ` for some j > 1, add to Θ the pair (N = (`, bj), C) satisfying Condition
2.3, and remove from Θ the pairs (Ni, Ci) for i = 1 . . . j. Observe that the existence of
C is proved in Lemma 5.4. Return to the iterative step (IS).

– Else, if b̄j = r for some j < n, add to Θ the pair (N = (aj , r), C) satisfying Condition
2.3, and remove from Θ the pairs (Ni, Ci) for i = j . . . n (observe that the existence of
C is proved in Lemma 5.5). Return to the iterative step (IS).

– Else, if for some j, Cj ∩ Cj+1 6= ∅, remove from Θ the pairs j and j + 1, and add to
Θ the pair (N = (aj , bj+1), C) satisfying Condition 2.3 (its existence is guaranteed,
depending on the situation by Lemmas 5.6, 5.7, 5.8 or 5.9). Return to the iterative
step (IS).

Finally note that, each time when we return to the iterative step the number of pairs of intervals
in Θ decreases, the algorithm performs at maximum n steps.

3. Generalizations

3.1. Diffusions with atoms in the speed measure. The absence of atoms of the speed measure was
required only for simplicity of exposition. A modification of the main result can be formulated also
when the speed measure has a finite number of atoms. The main difference is that the functions

z 7→
∫
(z,b)

ϕα(x)σN (dx), z 7→
∫
(a,z)

ψα(x)σN (dx),

in the proof of Lemma 5.3 can be discontinuous, having finite jumps at the atoms. Then, if one of
the extremes of an interval happens to be an atom, in order to verify (ii) and (iii) in Condition 2.3,
the representing measure should contain part of the mass of the atom, and the smooth fitting does
not hold. This situation, with the presentation of corresponding examples, was examined in Crocce
and Mordecki (2014).

3.2. More general reward functions. In many situations the reward function g is not regular enough
to satisfy the inversion formula (2.7). Assume then that there exists a measure ν such that

g(x) =

∫
I
Gα(x, y)ν(dy), (3.1)

where g is non-negative and continuous, and Gα(x, y) is defined by (2.5). In these cases, considering
the second derivative of the difference of two convex functions as a signed measure, it is possible to
obtain a “generalized” inversion formula useful for our needs (see Dudley (2002) Problems 11 and
12 of Section 6.3).

Just to consider a simple example, assume that X is a standard Brownian motion, and consider
the function g : R→ R given by

g(x) :=


0, x ≤ 0,

x, 0 < x < 1,

2− x, 1 ≤ x ≤ 2,

x− 2, x > 2.
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In this case, the differential operator is Lf = 1
2f
′′ when f is in D(L). The inversion formula (2.7)

would be

g(x) =

∫
R

Gα(x, y)(α− L)g(y)m(dy)

where m(dy) = 2dy, so the candidate to be ν is (α−L)g(y)2dy. The derivatives of g, in the general
sense, would be

g′(x) =


1, x < 1

−1, 1 < x < 2

1 x > 2

and the second generalized derivative is the measure −2δ1(dx) + 2δ2(dx) (where δa(dx) denotes the
Dirac’s delta measure at the point x = a). This lead us to consider

ν(dy) = 2αg(y)dy + 2δ1(dy)− 2δ2(dy). (3.2)

The corresponding computations show that (3.1) holds with ν in (3.2).

Theorem 3.1. Consider a one-dimensional diffusion X and a non-negative and continuous reward
function g : I → R such that (3.1) holds, with ν a signed measure on I. Suppose that Ci : i =
1, . . . ,m (m could be ∞) are pairwise disjoint subintervals of I, such that
(a)

∫
Ci
ϕα(y)ν(dy) = 0 if there is some x ∈ I such that x < y for all y ∈ Ci,

(b)
∫
Ci
ψα(y)ν(dy) = 0 if there is some x ∈ I such that x > y for all y ∈ Ci.

Define S by

S = I \
n⋃
i=1

Ci.

and V : I → R by

V (x) =

∫
S
Gα(x, y)ν(dy).

If ν(dy) ≥ 0 in S, and V ≥ g in C = ∪mi=1Ci, then V is the value function associated with the OSP,
and S is the stopping region.

Remark 3.2. With the same arguments given in Remark 2.2 we obtain the alternative representation
for V , given in (2.12).

Proof of Theorem 3.1: Based on Theorem 3.3.1 in Shiryaev (2008) we know that g satisfies Dynkin’s
characterization. The strategy for the proof is then to verify that V is the minimal α-excessive
function that dominates the reward function g. By the definition of V , and taking into account that
ν is a non-negative measure in S, we conclude that V is an α-excessive function. Applying Lemma
5.2 with Wα := V , we conclude that V (x) and g(x) are equal for x ∈ S, which in addition to the
hypothesis V (x) ≥ g(x) for all x ∈ Sc allow us to conclude that V is a majorant of the reward. So
far, we know

sup
τ
Ex
(
e−ατg(Xτ )

)
≤ V (x).

From Lemma 5.2 –in the first equality– we get

V (x) = Ex

(
e−αhSg(XhS )

)
≤ sup

τ
Ex
(
e−ατg(Xτ )

)
,

that proves the other inequality holds as well. From the previous equation we also conclude that S
is the stopping region. �
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Comparing Theorem 2.1 and Theorem 3.1, it should be emphasized that the former gives a
characterization of the solution and a method to find it, while the latter is just a verification
theorem, which of course, also suggests a method to find the solution. However, Theorem 3.1
has less restrictive hypothesis and, although we do not include it here, an algorithm to find the
continuation region may be developed, at least when the region in which the measure ν is negative,
is a finite union of intervals; in fact, Algorithm 2.1 would be a particular case of this algorithm
when considering ν(dy) = (α− L)g(y)m(dy).

4. Examples

In order to apply Theorem 2.1 it is necessary to check the inversion formula. This requires
essentially two conditions: enough smoothness and a proper behavior at infinity. A reasonable
behavior at infinite is the following:

lim
z↑r

g(z)

ψα(z)
= lim

z↓`

g(z)

ϕα(z)
= 0, (4.1)

(For other behaviors see Theorem 6.3 in Lamberton and Zervos (2013).) These conditions are useful
to verify the inversion formula (2.7) for a smooth function, as stated in the following result.

Proposition 4.1. Assume that I = (`, r), that for g : I → R the differential operator is defined for
all x ∈ I, and that ∫

I
Gα(x, y)|(α− L)g(y)|m(dy) <∞. (4.2)

Take sequences `n ↓ ` and rn ↑ r s.t. for each n there exists a function gn ∈ D(L) such that
gn(x) = g(x) for all x ∈ (`n+1, rn+1). Then, if (4.1) holds, the inversion formula (2.7) holds true.

Proof : Under the condition (4.2), an application of Fubini’s Theorem gives∫
I
Gα(x, y)(α− L)g(y)m(dy) = Rα(α− L)g(x).

Let τn be the hitting time of the set I \ (`n, rn), defined by

τn := inf{t ≥ 0: Xt /∈ (`n, rn)}.
Consider x ∈ (rn, `n). We have τn = inf{hrn , h`n}. By the continuity of the paths it can be concluded
that τn →∞, (n→∞). Applying Dynkin’s formula (2.1) to gn and τn we obtain

gn(x) = Ex

(∫ τn

0
e−αt(α− L)gn(Xt)dt

)
+ Ex

(
e−ατngn(Xτn)

)
,

taking into account that gn(x) = g(x) and (α − L)g(x) = (α − L)gn(x) for `n+1 < x < rn+1, from
the previous equality follows that

g(x) = Ex

(∫ τn

0
e−αt(α− L)g(Xt)dt

)
+ Ex

(
e−ατng(Xτn

)
). (4.3)

About the second term on the right-hand side of the previous equation we have

Ex
(
e−ατng(Xτn

)
) = Ex

(
e−αhrng(Xhrn )1{hrn<h`n}

)
+ Ex

(
e−αh`ng(Xh`n )1{h`n<hrn}

)
≤ Ex

(
e−αhrng(Xhrn )

)
+ Ex

(
e−αh`ng(Xh`n )

)
= ψα(x)

g(rn)

ψα(rn)
+ ϕα(x)

g(`n)

ϕα(`n)
,
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by (2.4), which taking the limit as n → ∞ vanishes, by (4.1). Finally, we can apply Fubini’s
theorem, and dominated convergence theorem to conclude that the limit as n→∞ of the first term
on the right-hand side of (4.3) is ∫

I
Gα(x, y)(α− L)g(y)m(dy),

thus completing the proof. �

4.1. Implementation. To compute in practice the optimal stopping region, following the Algorithm
2.1, it can be necessary a computational implementation of some parts of the algorithm. In fact, to
solve our examples we have implemented a script in R (R Core Team, 2018) that receives as input:

- the function (α− L)g;
- the density of the speed measure m;
- the atoms of the speed measure m;
- the functions ϕα and ψα;
- two numbers a, b that are interpreted as the left and right endpoint of an interval N

and produce as output two numbers a′ ≤ a, b′ ≥ b such that (N, (a′, b′)) satisfy Condition 2.3.
It is assumed that the interval N given as input satisfies the necessary conditions to ensure the
existence of N ′. To compute a′ and b′ we use a discretization of the given functions and compute
the corresponding integrals numerically. We follow the iterative procedure presented in the proof of
Lemma 5.3. Using this script the examples are easily solved following Algorithm 2.1.

4.2. Example: Brownian motion with polynomial reward. Theorem 2.1 is specially suited for non-
monotone reward functions. In the following two examples we consider the same process and reward
function with to different discount values: α = 2 and α = 1.5. It is known that the stopping region
increases with the discount (Prop. 1 in Mordecki and Salminen (2019a)). More interesting, the
algorithm 2.1 finds no intersection in the first case (so it is not necessary to go back to the iterative
step) but finds an intersection in the second case (and goes back to the iterative step). As a
result in the first case the continuation region has three components, and in the second case two.
Furthermore, it is clear that for α small enough, the problem is one sided.

Example 4.2 (α=2). Consider a standard Brownian motion X. Consider the reward function g
defined by

g(x) := −(x− 2)(x− 1)x(x+ 1)(x+ 2),

and the discount factor α = 2. To solve the optimal stopping problem (1.1), by the application of
Algorithm 2.1, we start by finding the set (α− L)g(x) < 0. As the infinitesimal generator is given
by Lg(x) = g′′(x)/2, after computations, we find that

N = {x : (α− L)g(x) < 0} =

3⋃
i=1

Ni,

with N1 ' (−2.95,−1.15), N2 ' (0, 1.15) and N3 ' (2.95,∞). Computing Ci, as is specified
in the (base step) of the algorithm in the proof of Theorem 2.1, we find C1 ' (−3.23,−0.50),
C2 ' (−0.36, 1.43) and C3 ' (1.78,∞). Observing that these intervals are disjoint we conclude
that the continuation region is given by C1 ∪ C2 ∪ C3. Now, by the application of equation (2.12),
we find the value function, which is shown in Fig. 4.1. Note that the smooth fit principle holds in
the four contact points.
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Figure 4.1. OSP for the standard BM and a 5th. degree polynomial: g (black),
V (gray, when different from g). Parameter α = 2.
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Figure 4.2. OSP for the standard BM and a 5th. degree polynomial: g (black),
V (gray, when different from g). Parameter α = 1.5.

Example 4.3 (α=1.5). Consider the process and the reward as in the previous example but with a
slightly smaller discount, α = 1.5. We have again

{x : (α− L)g(x) < 0} =
3⋃
i=1

Ni,

but with N1 ' (−3.21,−1.17), N2 ' (0, 1.17) and N3 ' (3.21,∞). Computing Ci we obtain
C1 ' (−3.53,−0.31), C2 ' (−0.39, 1.46) and C3 ' (1.76,∞). In this case C1 ∩ C2 6= ∅, therefore,
according to the algorithm, we have to consider N1 ' (−3.21, 1.17), obtaining C1 ' (−3.53, 1.46).
Now we have two disjoint intervals and the algorithm is completed. The continuation region, shown
in Fig. 4.2, is

C ' (−3.53, 1.46)
⋃

(1.76,∞).

4.3. Example: A non-differentiable reward. Consider the OSP with reward g : R→ R given by

g(x) =


x, x < 1,

−x+ 2, 1 ≤ x ≤ 2,

x− 2 x > 2.
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This is the function already presented above. It satisfies (3.1) with ν given by (3.2). Consider the
discount factor α = 1. The measure ν is negative in (−∞, 0) and in {2}. Computing exactly in the
first case, and by numerical approximation in the second (by following a variant of Algorithm 2.1),
we manage to find two disjoint intervals N1 ' (−∞, 1/

√
2) and N2 ' (1.15, 2.85) that satisfy the

conditions of Theorem 3.1. For V , we have the expression given in Remark 3.2, which considering
ψα(x) = e

√
2αx and ϕα(x) = e−

√
2αx in the particular case α = 1, renders2

V1(x) =



k12e
√
2x, x < 1√

2
,

x, 1√
2
≤ x ≤ 1,

−x+ 2, 1 < x ≤ 1.15,

k21e
−
√
2x + k22e

√
2x, 1.15 < x < 2.85,

x− 2, x ≥ 2.85;

with k12 = 1
e
√
2
' 0.26, k21 ' 3.96 and k22 ' 0.013.

-0.5 0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

0.8

1

Figure 4.3. OSP for the standard BM and irregular reward: g (black), V1 (gray,
when different from g).

In Figure 4.3 we show the reward function g and the value function V1.

4.4. Example: Brownian motion with broken drift. Consider the diffusion X = {X(t) : t ≥ 0} taking
values in R that is the strong solution of the stochastic differential equation

X(t) = x+

∫ t

0
µ(X(s))ds+W (t),

where for 0 ≤ µ1 < µ2

µ(x) =

{
µ1, for x < 0,

µ2, for x ≥ 0,

and {Wt : t ≥ 0} is a standard Brownian motion. Consider g(x) = (1 + x)+, α > 0, and the OSP
given in (1.1). This problem was solved with different methods in Mordecki and Salminen (2019a),
from where we borrow notation and formulas.

We now compute the Green kernel ofX and verify the inversion formula (3.1). The speed measure
of this diffusion is given by

m(dx) =

{
2e2µ1xdx, for x < 0,

2e2µ2xdx, for x > 0,

2we approximate the roots.
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The decreasing and increasing fundamental solutions, respectively, are

ϕα(x) =

{
A1 exp(λ−1 x) +A2 exp(λ+1 x), for x < 0,

exp(λ−2 x), for x ≥ 0,
(4.4)

ψα(x) =

{
exp(λ+1 x), for x < 0,
B1 exp(λ+2 x) +B2 exp(λ−2 x), for x ≥ 0

(4.5)

where the exponents are

λ−1 = −
√
µ21 + 2α− µ1 < 0, λ+1 =

√
µ21 + 2α− µ1 > 0,

λ−2 = −
√
µ22 + 2α− µ2 < 0, λ+2 =

√
µ22 + 2α− µ2 > 0.

and the coefficients

A1 =
λ+1 − λ

−
2

λ+1 − λ
−
1

=
λ+1 − λ

−
2

2
√
µ21 + 2α

> 0, A2 =
λ−2 − λ

−
1

λ+1 − λ
−
1

=
λ−2 − λ

−
1

2
√
µ21 + 2α

< 0.

B1 =
λ+1 − λ

−
2

λ+2 − λ
−
2

=
λ+1 − λ

−
2

2
√
µ22 + 2α

> 0, B2 =
λ+2 − λ

+
1

λ+2 − λ
−
2

=
λ+2 − λ

+
1

2
√
µ22 + 2α

< 0.

To check equation (3.1) we take a smooth approximation gn of g (for instance resulting of the
convolution of g with a positive smooth kernel with compact support integrating one). On one side
we have

gn(x)→ g(x) for every x ∈ R

while on the other, for weak convergence of measures

(α− L)gn(y)m(dy)→ (α− L)g(y)m(dy)− e−2µ1δ−1(dy) =: ν(dy). (4.6)

From our computations we obtain that the Green kernel has decay rates s.t. Proposition 4.1 applies
to gn. The weak convergence of measures gives then (3.1) with ν defined in (4.6).

To apply Theorem 3.1 we assume µ1 = 1, α = 3, and µ2 = 5. The negative set of the problem is

N = (−∞,−2/3] ∪ [0, 1/3]

By applying our enlargement procedure (including the atom at x = −1) we find

C = (−∞,−0.392] ∪ [−0.198, 0.761]

giving a two-interval continuation region, depicted in Fig. 4.4.
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Figure 4.4. In black the stopping intervals for the problem. The value function is smooth.

For closer values of µ1 and µ2 the continuation region becomes one interval (see the complete
solution in Mordecki and Salminen (2019a)).

5. Proof of the main result

To begin with the proof, we first observe that for a diffusions defined as in section 2, excessive
functions are continuous (see 29 in Borodin and Salminen (2002)), and for the OSP in (1.1), Theorem
6 pp. 137 in Shiryaev (2008) is applicable, giving that the optimal stopping rule exists and has the
form (1.2) with stopping set (1.3). In consequence, as both g and V are continuous functions, the
set S is closed. We follow by presenting a few preliminary results.

Proposition 5.1 (Harmonicity). (a) Consider x ∈ [a, b] ⊂ I and

hab := inf{t : Xt = a} ∧ inf{t : Xt = b}.
Then, if a > `

ϕα(x) = Ex

(
e−αhabϕα(Xhab)

)
,

and, if b < r

ψα(x) = Ex

(
e−αhabψα(Xhab)

)
.

(b) Consider the function Wα : I → R such that

Wα(x) =

∫
S
Gα(x, y)σ(dy),

where σ is a postive measure and the set S is

S = I \
n⋃
i=1

Ni,

where n could be infinite, and Ni are disjoint intervals included in I. Then, the functionWα satisfies

Wα(x) = Ex

(
e−αhSWα(XhS )

)
.
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Proof : (a) Let us proof the first statement, which is a direct consequence of the discounted Dynkin’s
formula for functions that belong to D(L). As ϕα /∈ D(L), we consider a function h ∈ Cb(I) such
that h(x) = 0 for x ≥ a and h(x) > 0 for x < a. Then f defined by f(x) := (Rαh) (x) belongs to
D(L) and there exist a constant k > 0 such that for x ≥ a, f(x) = kϕα(x) (see Itô and McKean,
1974, section 4.6). The discounted Dynkin’s formula holds for f , so, for x ≥ a,

f(x)− Ex
(
e−αhabf(Xhab)

)
= Ex

(∫ hab

0
(α− L)f(Xt)dt

)
.

From the continuity of the paths, for t ∈ [0, hab], Xt ≥ a and (α − L)f(Xt) = h(Xt) = 0, so the
right-hand side of the previous equation vanishes. Finally taking into account the relation between
f and ϕα the conclusion follows. The second statement is proved in an analogous way.
(b) If x ∈ S the result is trivial, because hS ≡ 0. Let us consider the case x /∈ S. In this case x ∈ Ni

for some i; we move on to prove that

Gα(x, y) = Ex

(
e−αhSGα(XhS , y)

)
for all y in S. To see this, let us denote by a = inf Ni and b = supNi, and observe that hS = hab.
If b < r and y ≥ b we have Gα(x, y) = w−1α ψα(x)ϕα(y) and by (a) we get

Gα(x, y) = w−1α Ex

(
e−αhabψα(Xhab)

)
ϕα(y)

= Ex

(
e−αhabGα(Xhab , y)

)
,

where in the second equality we have used again (2.5) and the fact that hab ≤ y. In the case y ≤ a
we have to do the analogous computation. Now we can write

Wα(x) =

∫
S
Gα(x, y)σ(dy) =

∫
S
Ex

(
e−αhSGα(XhS , y)

)
σ(dy)

= Ex

(
e−αhS

∫
S
Gα(XhS , y)σ(dy)

)
= Ex

(
e−αhSWα(XhS , y)

)
,

and the result follows. �

Lemma 5.2 (Representation). Let X be a one-dimensional diffusion and consider the function
g : I → R defined by

g(x) :=

∫
I
Gα(x, y)σ(dy),

where σ is a signed measure on I. Consider the function Wα : I → R defined by

Wα(x) :=

∫
S
Gα(x, y)σ(dy), (5.1)

where the set S is

S := I \
m⋃
i=1

Ci,

where m could be infinite, the intervals Ci ⊂ I are pairwise disjoint, and

(a)
∫
Ci
ϕα(y)σ(dy) = 0 if there is some x ∈ I such that x < y for all y ∈ Ci,

(b)
∫
Ci
ψα(y)σ(dy) = 0 if there is some x ∈ I such that x > y for all y ∈ Ci,

Then g(x) = Wα(x) for all x ∈ S.
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Proof : From the definitions of g and Wα we get

g(x) =

∫
I
Gα(x, y)σ(dy)

= Wα(x) +
m∑
i=1

∫
Ci

Gα(x, y)σ(dy).

To prove the result it is enough to verify that if x ∈ S, then∫
Ci

Gα(x, y)σ(dy) = 0, for all i.

Consider x ∈ S, then for any i = 1 . . . n, we have that x /∈ Ci. Since Ci is an interval either x < y
for all y in Ci or x > y for all y in Ci. Suppose the first case, from (2.5) we obtain∫

Ci

Gα(x, y)σ(dy) = w−1α ψα(x)

∫
Ci

ϕα(y)σ(dy) = 0,

where the second equality follows from hypothesis. The other case is analogous. �

5.1. Enlargment.

Lemma 5.3 (Enlargment). Under the assumptions of Theorem 2.1, consider an interval N ⊆ I,
such that σ(dx) < 0 for x ∈ N . Then, there exists an interval C such that (N,C) satisfies Condition
2.3

Proof : Consider N to be (a, b). Assertion (i) in Condition 2.3 is clearly fulfilled. Without loss of
generality (denoting by ϕα the result of multiplying ϕα by the necessary positive constant) we may
assume ∫

N
ψα(x)σ(dx) =

∫
N
ϕα(x)σ(dx) < 0.

Under this assumption, ϕα(a) < ψα(a) and ϕα(b) > ψα(b). Consider

x1 := inf

{
z ∈ [`, a] :

∫
(z,b)

ϕα(x)σN (dx) < 0

}
.

Since ϕα(x) > ψα(x) for x ≤ a and σN (dx) is non-negative in the same region we conclude that∫
(x1,b)

ψα(x)σN (dx) ≤ 0. Consider y1 > b defined by

y1 := sup

{
z ∈ [b, r] :

∫
(x1,z)

ψα(x)σN (dx) < 0

}
.

Now we consider x2 ≥ x1 as

x2 := inf

{
z ∈ [`, a] :

∫
(z,y1)

ϕα(x)σN (dx) < 0

}
and y2 ≥ y1 as

y2 := sup

{
z ∈ [b, r] :

∫
(x2,z)

ψα(x)σN (dx) < 0

}
.

Following in the same way we obtain two non-decreasing sequences ` ≤ {xn} ≤ a and b ≤ {yn} ≤ r.
By construction, the interval C = (limxn, lim yn) satisfies (ii) and (iii) in Condition 2.3. To prove
(iv), first we find k1(x) and k2(x) such that{

k1(x)ψα(a) + k2(x)ϕα(a) = Gα(x, a)

k1(x)ψα(b) + k2(x)ϕα(b) = Gα(x, b).



An algorithm for OSP for diffusions 1369

Solving the system we obtain

k1(x) =
Gα(x, b)ϕα(a)−Gα(x, a)ϕα(b)

ψα(b)ϕα(a)− ψα(a)ϕα(b)

and

k2(x) =
Gα(x, a)ψα(b)−Gα(x, b)ψα(a)

ψα(b)ϕα(a)− ψα(a)ϕα(b)
.

Let us see that k1(x), k2(x) ≥ 0 for any x ∈ C: using the explicit formula for Gα it follows that

k1(x) =


0 for x ≤ a,
w−1α ϕα(b)ψα(x)ϕα(a)−ψα(a)ϕα(x)ψα(b)ϕα(a)−ψα(a)ϕα(b) for x ∈ (a, b),
w−1α ψα(x) for x ≥ b.

When x ∈ (a, b) the numerator and denominator are non-negative because ϕα is decreasing and ψα
increasing. The case of k2 is analogous.

Considering h(x, y) = k1(x)ψα(y) + k2(x)ϕα(y), it can be seen (discussing for the different posi-
tions of x and y with respect to a and b) that for all x ∈ C, h(x, y) ≤ Gα(x, y) for y ∈ (a, b) and
h(x, y) ≥ Gα(x, y) for y /∈ (a, b). From these inequalities we conclude that∫

C
Gα(x, y)σN (dy) ≤

∫
C
h(x, y)σN (dy) ≤ 0;

where the first inequality is consequence of σN (dy) ≥ 0 in I \ N and σN (dy) ≤ 0 in N ; and the
second one is obtained fixing x and observing that h(x, y) is a linear combination of ψα and ϕα with
non-negative coefficients. �

Lemma 5.4 (Left Enlargment). Under the assumptions of Theorem 2.1, consider the interval
N = (a, b) and C = (`, b̄) (with b̄ < r) such that (N,C) satisfy Condition 2.3. Then, there exists
b′ ≥ b̄ such that (N ′ = (`, b), C ′ = (`, b′)) satisfy Condition 2.3.

Proof : First observe that, if D ⊂ D′, based on definition (2.13), we have that

σD′(dx)− σD(dx) is a negative measure. (5.2)

By hypothesis we know ∫
C
ψα(y)σN (dy) = 0.

It follows from (5.2) that ∫
C
ψα(y)σN ′(dy) ≤ 0.

Consider b′ = sup{x ∈ [b̄, r) :
∫
(`,x) ψα(y)σN ′(dy) ≤ 0}. Let us check that N ′ = (`, b), C ′ = (`, b′)

satisfies Condition 2.3. It is clear that∫
C′
ψα(y)σN ′(dy) ≤ 0,

with equality if b′ < r. This proves (iii) in Condition 2.3. Observe that (ii) is automatic, as
` = inf C ′. Now we prove (iv). Consider∫

C′
Gα(x, y)σN ′(dy) =

∫
C
Gα(x, y)σN (dy) +

∫
C
Gα(x, y)(σN ′ − σN )(dy)

+

∫
C′\C

Gα(x, y)σN ′(dy). (5.3)
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The first term on the right-hand side is non-positive by hypothesis. Let us analyze the sum of
the remainder terms. Considering the previous decomposition with ψα(y) instead of Gα(x, y), and
taking

∫
C ψα(y)σN (dy) = 0 into account, we obtain∫

C
ψα(y)(σN ′ − σN )(dy) +

∫
C′\C

ψα(y)σN ′(dy) ≤ 0. (5.4)

Consider k(x) such that k(x)ψα(b̄) = Gα(x, b̄); we have k(x)ψα(y) ≤ Gα(x, y) if y ≤ b̄ and
k(x)ψα(y) ≥ Gα(x, y) if y ≥ b̄. Also note that (σN ′ − σN )(dy) is non-positive in C and σN ′ is
non-negative in C ′ \ C. We get∫

C
Gα(x, y)(σN ′ − σN )(dy) +

∫
C′\C

Gα(x, y)σN ′(dy)

≤ k(x)

(∫
C
ψα(y)(σN ′ − σN )(dy) +

∫
C′\C

ψα(y)σN ′(dy)

)
≤ 0. (5.5)

This completes the proof of (iv). To prove (i), first observe that∫
N ′
ψασ(dy) ≤

∫
N ′
ψασN ′(dy) ≤

∫
C′
ψασN ′(dy) = 0. (5.6)

To complete the proof, applying the same arguments in (5.6) to the decreasing solution ϕα, it is
enough to see that ∫

C′
ϕα(y)σN ′(dy) ≤ 0,

Now∫
C′
ϕα(x)σN ′(dy)

=

∫
C
ϕα(x)σN (dy) +

∫
C
ϕα(x)(σN ′ − σN )(dy) +

∫
C′\C

ϕα(x)σN ′(dy)

≤
∫
C
ϕα(x)(σN ′ − σN )(dy) +

∫
C′\C

ϕα(x)σN ′(dy)

≤ k

(∫
C
ψα(x)(σN ′ − σN )(dy) +

∫
C′\C

ψα(x)σN ′(dy)

)
≤ 0.

The last equality is (5.4). The first inequality is a consequence of the hypotesis. And in the second,
k > 0 is such that ϕα(b̄) = kψα(b̄) and the same arguments as in (5.5) apply. This concludes the
proof. �

Lemma 5.5 (Right enlargment). Under the assumptions of Theorem 2.1, consider the interval
N = (a, b) and C = (ā, r) (with ā > `), such that (N,C) satisfies Condition 2.3. Then, there exists
a′ ≤ ā such that (N ′ = (a, r), C ′ = (a′, r)) satisfies Condition 2.3.

Proof : Analogous to the proof of the previous lemma. �

5.2. Merge.

Lemma 5.6 (Merge). Under the assumptions of Theorem 2.1, consider N1 = (a1, b1), N2 = (a2, b2)
such that b1 < a2 and (α − L)g(x) ≥ 0 for x in (b1, a2). Let C1 = (ā1, b̄1) and C2 = (ā2, b̄2) be
intervals such that ā1 > `, b̄1 < r, ā2 > `, b̄2 < r. Suppose that the two pairs of intervals (N1, C1),
(N2, C2) satisfy Condition 2.3. Then, if C1 ∩ C2 6= ∅, considering N = (a1, b2), there exists an
interval C such that (N,C) satisfies Condition 2.3.



An algorithm for OSP for diffusions 1371

Proof : By hypothesis ∫
Ci

ϕα(x)σNi(dx) =

∫
Ci

ψα(x)σNi(dx) = 0, i = 1, 2.

Then ∫
C1

⋃
C2

ϕα(x)σ(dx) = −
∫
C1∩C2

ϕα(x)σ+(dx)

and ∫
C1

⋃
C2

ψα(x)σ(dx) = −
∫
C1∩C2

ψα(x)σ+(dx).

We assume, without loss of generality, that∫
C1∩C2

ϕα(x)σ+(dx) =

∫
C1∩C2

ψα(x)σ+(dx) > 0

and therefore, denoting by (a′, b′) the interval C1 ∪ C2, we get:∫
(a′,b′)

ϕα(x)σ(dx) =

∫
(a′,b′)

ψα(x)σ(dx) < 0;

ψα(a′) ≤ ϕα(a′); and ψα(b′) ≥ ϕα(b′). The same procedure in the proof of Lemma 5.3, allow us
to construct an interval C such that (N,C) satisfy (i), (ii) and (iii) in Condition 2.3. Let us prove
(iv): If x < a1 we have Gα(x, y) = w−1α ψα(x)ϕα(y) for y ≥ a1 and Gα(x, y) ≤ w−1α ψα(x)ϕα(y) for
y ≤ a1; since σN (dy) is non-negative in y ≤ a1 we find∫

C
Gα(x, y)σN (dy) ≤ w−1α ψα(x)

∫
C
ϕα(y)σN (dy) ≤ 0.

An analogous argument prove the assertion in the case x > b2. Now consider x ∈ N , suppose
x < min{a2, b̄1} (in case x > max{b1, ā2} an analogous argument is valid), we get∫

C
Gα(x, y)σN (dy) =

∫
C1

Gα(x, y)σN1(dy) +

∫
C1

Gα(x, y)(σN − σN1)(dy)

+

∫
C\C1

Gα(x, y)σN (dy),

where
∫
C1
Gα(x, y)σN1(dy) ≤ 0 by hypothesis. We move on to prove that the sum of the second and

the third terms on the right-hand side of the previous equation are non-positive, thus completing
the proof: Observe that

Gα(x, y) ≤ w−1α ψα(x)ϕα(y)

and
Gα(x, y) = w−1α ψα(x)ϕα(y) (y ≥ min{a2, b̄1})

The measure (σN−σN1) has support in N2, where the previous equality holds. The measure σN (dy)
is positive for y < a1 where we do not have the equality, then∫

C1

Gα(x, y)(σN − σN1)(dy) +

∫
C\C1

Gα(x, y)σN (dy)

≤ w−1α ψα(x)

(∫
C1

ϕα(y)(σN − σN1)(dy) +

∫
C\C1

ϕα(y)σN (dy)

)
≤ 0,
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where the last inequality is a consequence of∫
C
ϕα(y)σN (dy) =

∫
C1

ϕα(y)σN1(dy) +

∫
C1

ϕα(y)(σN − σN1)(dy)

+

∫
C\C1

ϕα(y)σN (dy) ≤ 0,

and ∫
C1

ϕα(y)σN1(dy) = 0.

This completes the proof. �

Lemma 5.7 (Left merge). Under the assumptions of Theorem 2.1, consider N1 = (`, b1), N2 =
(a2, b2) such that: b1 < a2; and (α−L)g(x) ≥ 0 for x in (b1, a2). Let C1 = (`, b̄1) and C2 = (ā2, b̄2)
be intervals such that: b̄1 < r; ā2 > `; and b̄2 < r. Suppose that the two pairs of intervals (N1, C1),
(N2, C2) satisfy Condition 2.3. If C1∩C2 6= ∅ then, considering N = (`, b2), there exists b̄ such that
(N,C = (`, b̄)) satisfies Condition 2.3.

Proof : Define b̄ = sup{x ∈ [b̄2, r) :
∫
(`,x) ψα(y)σN (dy) ≤ 0} (note that b̄2 belongs to the set). We

have ∫
C
ψα(y)σN (dy) ≤ 0, (5.7)

with equality if b̄ < r, proving (ii) in Condition 2.3. To prove (iv) we split the integral as follows:∫
C
Gα(x, y)σN (dy) =

∫
C1

Gα(x, y)σN1(dy) +

∫
C2

Gα(x, y)σN2(dy) (5.8)

−
∫
C1∩C2

Gα(x, y)σ+N (dy) +

∫
C\(C1

⋃
C2)

Gα(x, y)σN (dy)

where σ+N is the positive part of σN . Considering the same decomposition as in (5.8) with ψα(y), in-
stead of Gα(x, y), and also considering: equation (5.7);

∫
C1
ψα(y)σN1(dy) = 0; and∫

C2
ψα(y)σN2(dy) = 0, we obtain

−
∫
C1∩C2

ψα(y)σ+N (dy) +

∫
C\(C1

⋃
C2)

ψα(y)σN (dy) ≤ 0. (5.9)

For every x consider k(x) ≥ 0 such that k(x)ψα(b̄2) = Gα(x, b̄2). We have k(x)ψα(b̄2) ≤ Gα(x, b̄2)
for y ≤ b̄2 and k(x)ψα(b̄2) ≥ Gα(x, b̄2) for y ≥ b̄2 and therefore

−
∫
C1∩C2

Gα(x, y)σ+N (dy) +

∫
C\(C1

⋃
C2)

Gα(x, y)σN (dy)

= k(x)

(
−
∫
C1∩C2

ψα(y)σ+N (dy) +

∫
C\(C1

⋃
C2)

ψα(y)σN (dy)

)
≤ 0.

The first two terms on the right-hand side of equation (5.8) are also non-positive, and we conclude
that (iv) in Condition 2.3 holds. To prove (ii) we consider the decomposition in (5.8) with ϕα(y)
instead of Gα(x, y) and k ≥ 0 such that kψα(b̄2) = ϕα(b̄2); the same considerations done to prove
(iv) conclude the result in this case. �

Lemma 5.8 (Right merge). Under the assumptions of Theorem 2.1, consider N1 = (a1, b1), N2 =
(a2, r) such that: b1 < a2; and (α−L)g(x) ≥ 0 for x in (b1, a2). Let C1 = (ā1, b̄1) and C2 = (ā2, r)
intervals such that: ā1 > `; b̄1 < r; and ā2 > `. Suppose that the two pairs of intervals (N1, C1),
(N2, C2) satisfy Condition 2.3. If C1 ∩ C2 6= ∅ then, considering N = (a1, r), there exists ā such
that (N,C = (ā, r)) satisfies Condition 2.3.
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Proof : Analogous to the previous lemma. �

Lemma 5.9 (Total merge). Under the assumptions of Theorem 2.1, consider N1 = (`, b1), N2 =
(a2, r) such that: b1 < a2; and (α − L)g(x) ≥ 0 for x in (b1, a2). Let C1 = (`, b̄1) and C2 = (ā2, r)
intervals such that the two pairs of intervals (N1, C1), (N2, C2) satisfy Condition 2.3. If C1∩C2 6= ∅
then for all x ∈ I, ∫

I
Gα(x, y)σ(dy) ≤ 0. (5.10)

In consequence, the pair (I, I) satisfies Condition 2.3.

Proof : Consider the following decomposition of the integral∫
I
Gα(x, y)σ(dy) =

∫
C1

Gα(x, y)σN1(dy) +

∫
C2

Gα(x, y)σN2(dy)

−
∫
C1∩C2

Gα(x, y)σ+(dy).

Observing that the three terms on the right-hand side are non-positive, the lemma is proved. �

Remark 5.10. Observe that this case can not happen under our hypothesis: as the inversion formula
(2.7) holds, and we assume g non negative, condition (5.10) gives a contradiction (unless g ≡ 0).

5.3. Proof of Theorem 2.1.

Proof : We first apply Algorithm 2.1 departing from N = ∪ni=1Ni to obtain a set of pairwise disjoint
intervals {C1, . . . , Cm}. Observe that, under our hypothesis, the algorithm does not give as a result
C1 = I (see Remark 5.10). Denote C = ∪mi=1Ci and S = I \ C. Condition N ⊂ C follows by
construction, as the algorithm enlarges the negative set. Furthermore, the intervals Ci that result
from the algorithm satisfy conditions (a) and (b) as they satisfy (i) and (ii) in Condition 2.3, due
to the fact that σN = σ restricted to each final Ci resulting from the algorithm. Condition (c) is
also satisfied, due to this same fact. It remains to prove that this is in fact the continuation region
associated with the optimal stopping problem. We use the Dynkin’s characterization as the minimal
α-excessive majorant to prove that

V (x) :=

∫
I\C

Gα(x, y)σ(dy)

is the value function. Since σ(dy) is non-negative in I \ C we have that V is α-excessive. For x ∈ I,
we have

g(x) =

∫
I
Gα(x, y)σ(dy) = V (x) +

m∑
i=1

∫
Ci

Gα(x, y)σ(dy). (5.11)

If x /∈ C, the sum in the r.h.s. of (5.11) vanishes by (a) and (b), as in the proof of Lemma 5.2. This
gives V (x) = g(x) for x ∈ S. On the other hand, based on (c), this same sum is non-positive if
x ∈ C. This gives V (x) ≥ g(x) for x ∈ C. We have then proved that V is a majorant of g. We have,
up to now, V (x) ≥ supτ Ex (e−ατg(Xτ )). Finally observe that, denoting by S the set I \ C

V (x) = Ex

(
e−αhSV (XhS )

)
= Ex

(
e−αhSg(XhS )

)
,

where the first equality is a consequence of Lemma 5.1. We conclude that V is the value function
and that S is the stopping region, finishing the proof. �
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