english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/39851 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFachola, Christian-
dc.contributor.authorTornaría, Agustín-
dc.contributor.authorBermolen, Paola-
dc.contributor.authorCapdehourat, Germán-
dc.contributor.authorEtcheverry, Lorena-
dc.contributor.authorFariello, María Inés-
dc.date.accessioned2023-09-08T18:03:02Z-
dc.date.available2023-09-08T18:03:02Z-
dc.date.issued2023-
dc.identifier.citationFachola, C., Tornaría, A., Bermolen, P. y otros. "Federated learning for data analytics in education". Data. [en línea]. 2023, vol. 8, no 2, pp. 1-16. DOI: 10.3390/data8020043es
dc.identifier.issn2306-5729-
dc.identifier.urihttps://www.mdpi.com/2306-5729/8/2/43-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/39851-
dc.description.abstractFederated learning techniques aim to train and build machine learning models based on distributed datasets across multiple devices while avoiding data leakage. The main idea is to perform training on remote devices or isolated data centers without transferring data to centralized repositories, thus mitigating privacy risks. Data analytics in education, in particular learning analytics, is a promising scenario to apply this approach to address the legal and ethical issues related to processing sensitive data. Indeed, given the nature of the data to be studied (personal data, educational outcomes, and data concerning minors), it is essential to ensure that the conduct of these studies and the publication of the results provide the necessary guarantees to protect the privacy of the individuals involved and the protection of their data. In addition, the application of quantitative techniques based on the exploitation of data on the use of educational platforms, student performance, use of devices, etc., can account for educational problems such as the determination of user profiles, personalized learning trajectories, or early dropout indicators and alerts, among others. This paper presents the application of federated learning techniques to a well-known learning analytics problem: student dropout prediction. The experiments allow us to conclude that the proposed solutions achieve comparable results from the performance point of view with the centralized versions, avoiding the concentration of all the data in a single place for training the models.es
dc.description.sponsorshipEsta investigación fue financiada por la Agencia Nacional de Innovación e Investigación (ANII) Uruguay, Número de Subvención FMV_3_2020_1_162910.es
dc.format.extent16 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherMDPIes
dc.relation.ispartofData, vol. 8, no 2, feb. 2023, pp. 1-16.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectFederated learninges
dc.subjectLearning analyticses
dc.titleFederated learning for data analytics in educationes
dc.typeArtículoes
dc.contributor.filiacionFachola Christian, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionTornaría Agustín, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionBermolen Paola, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCapdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionEtcheverry Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionFariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.3390/data8020043-
udelar.academic.departmentTelecomunicaciones-
udelar.investigation.groupAnálisis de Redes, Tráfico y Estadísticas de Servicios-
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)
Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FTBCEF23.pdfVersión publicada1,57 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons