english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/39745 Cómo citar
Título: Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
Autor: Abud, A. Abed
Abi, B.
Duarte, Lucía
Tipo: Artículo
Palabras clave: Neutrino experiments, Convolutional neural network, Energy deposits
Fecha de publicación: 2022
Resumen: Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
Descripción: Trabajo realizado por más de doscientos autores.
Editorial: Springer Nature
EN: European Physical Journal C, 2022, 82: 903.
Citación: Abud, A, Abi, B y Duarte, L [y otros autores]. "Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network". European Physical Journal C. [en línea] 2022, 82: 903. 19 h. DOI: 10.1140/epjc/s10052-022-10791-2
ISSN: 1434-6052
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
101140epjcs10052022107912.pdf3,23 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons