Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/39745
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Abud, A. Abed | - |
dc.contributor.author | Abi, B. | - |
dc.contributor.author | Duarte, Lucía | - |
dc.date.accessioned | 2023-08-30T17:49:14Z | - |
dc.date.available | 2023-08-30T17:49:14Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Abud, A, Abi, B y Duarte, L [y otros autores]. "Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network". European Physical Journal C. [en línea] 2022, 82: 903. 19 h. DOI: 10.1140/epjc/s10052-022-10791-2 | es |
dc.identifier.issn | 1434-6052 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/39745 | - |
dc.description | Trabajo realizado por más de doscientos autores. | es |
dc.description.abstract | Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation. | es |
dc.format.extent | 19 h. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en_US | es |
dc.publisher | Springer Nature | es |
dc.relation.ispartof | European Physical Journal C, 2022, 82: 903. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Neutrino experiments | es |
dc.subject | Convolutional neural network | es |
dc.subject | Energy deposits | es |
dc.title | Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network | es |
dc.type | Artículo | es |
dc.contributor.filiacion | Abud A. Abed | - |
dc.contributor.filiacion | Abi B. | - |
dc.contributor.filiacion | Duarte Lucía, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.1140/epjc/s10052-022-10791-2 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
101140epjcs10052022107912.pdf | 3,23 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons