Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/38759
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Arias, Pablo | es |
dc.contributor.author | Randall, Gregory | es |
dc.contributor.author | Sapiro, Guillermo | es |
dc.date.accessioned | 2023-08-01T20:33:39Z | - |
dc.date.available | 2023-08-01T20:33:39Z | - |
dc.date.issued | 2007 | es |
dc.date.submitted | 20230801 | es |
dc.identifier.citation | Arias, P., Randall, G., Sapiro, G. Connecting the out-of-sample and pre-Image problems in Kernel methods [Preprint] Publicado en IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007. doi: 10.1109/CVPR.2007.383038. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/38759 | - |
dc.description | Trabajo presentado a la IEEE Conference on Computer Vision and Pattern Recognition, 2007 | es |
dc.description.abstract | Kernel methods have been widely studied in the field of pattern recognition. These methods implicitly map, "the kernel trick," the data into a space which is more appropriate for analysis. Many manifold learning and dimensionality reduction techniques are simply kernel methods for which the mapping is explicitly computed. In such cases, two problems related with the mapping arise: The out-of-sample extension and the pre-image computation. In this paper we propose a new pre-image method based on the Nystrom formulation for the out-of-sample extension, showing the connections between both problems. We also address the importance of normalization in the feature space, which has been ignored by standard pre-image algorithms. As an example, we apply these ideas to the Gaussian kernel, and relate our approach to other popular pre-image methods. Finally, we show the application of these techniques in the study of dynamic shapes. | es |
dc.language | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Feature extraction | es |
dc.subject | Gaussian processes | es |
dc.subject | Image recognition | es |
dc.title | Connecting the out-of-sample and pre-image problems in kernel methods | es |
dc.type | Preprint | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ARS07.pdf | 209,93 kB | Adobe PDF | Visualizar/Abrir | ||
Correction to Arias et al. [1].pdf | 12,67 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons