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Abstract

Kernel methods have been widely studied in the field of
pattern recognition. These methods implicitly map, “the
kernel trick,” the data into a space which is more appropri-
ate for analysis. Many manifold learning and dimension-
ality reduction techniques are simply kernel methods for
which the mapping is explicitly computed. In such cases,
two problems related with the mapping arise: The out-of-
sample extension and the pre-image computation. In this
paper we propose a new pre-image method based on the
Nyström formulation for the out-of-sample extension, show-
ing the connections between both problems. We also ad-
dress the importance of normalization in the feature space,
which has been ignored by standard pre-image algorithms.
As an example, we apply these ideas to the Gaussian kernel,
and relate our approach to other popular pre-image meth-
ods. Finally, we show the application of these techniques in
the study of dynamic shapes.

1. Introduction

Kernel methods have been shown to be powerful tech-
niques for studying non-linear data. The main idea behind
these methods is to map the data into a space better suited
for linear algorithms. The mapping, however, is often not
explicitly computed, leading to the so called “kernel trick:”
The kernel function encodes the useful information about
the mapping. Kernel methods have been used in numerous
image processing and computer vision applications; see for
example [24] for a comprehensive review on kernel meth-
ods.

Kernel methods are closely related to manifold learning
techniques such as those described in [2, 5, 10, 17, 23, 26],
see [3, 4, 13] for details. The aim of these algorithms is to
map the original dataset into a parameter space, usually of
lower dimension. The mapping is associated with a kernel
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function, giving a different point of view to the manifold
learning problem. As a result, new manifold learning al-
gorithms have been developed using design techniques bor-
rowed from the kernel methods theory, e.g. [28].

In general, for manifold learning techniques, the map-
ping is only known over the training set. This mapping
needs to be extended to new input points as they come,
without having to re-compute the (often expensive) whole
map. This is known as the out-of-sample problem. In ad-
dition, after operations are performed in the mapped (fea-
ture) space, often the corresponding data point in the origi-
nal space needs to be computed. This is known as the pre-
image problem. While both problems are treated separately
in the literature, we show in this paper that they are closely
related, and in particular, the Nyström extension for the out-
of-sample task can be extended to address the pre-image is-
sue as well. We should note that most of the work in the
pre-image problem has been done for the Gaussian kernel.
This kernel has been widely used in the field of patter clas-
sification and also for manifold learning. In [8, 9, 25] the
Gaussian kernel is used to perform kernel principal compo-
nent analysis (PCA) for image de-noising and shape man-
ifold learning, outperforming ordinary PCA. In [7] a non-
parametric probability density function is learned by assum-
ing a Normal distribution in the feature space of a Gaussian
kernel.

A common approach for studying both static and dy-
namic data is to first learn the non-linear manifold under-
lying the training set, e.g. [1, 7, 9, 19]. The learned man-
ifold is then used for diverse applications such as activity
recognition and object tracking. In these cases, both the out-
of-sample extension and the pre-image problem are central
issues. The out-of-sample extension is critical to handle
new data as it comes in, without the necessity to re-learn
the manifold, task which is computationally expensive and
performed off-line. The pre-image is critical to being able
to work back in the original space, either for visualization
(when computing an average, for example, or when using
kernel PCA for de-noising or analysis), or for operations
such as tracking in the video space.

The contribution of this paper is threefold. First, we pro-
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pose a new approach for addressing the pre-image problem,
based on the connections with the out-of-sample extension.
In particular we use the Nyström extension for this pur-
pose. We exemplify these ideas with the Gaussian kernel,
although they can be generalized to other kernels. Secondly,
the proposed formulation gives insight into the understand-
ing of the pre-image problem and into some existing pre-
image algorithms. Thirdly, we carefully consider the issue
of the norm in the feature space, which has been previously
ignored for pre-image algorithms.

As an application of the proposed pre-image technique,
we analyze dynamic shapes (DS), namely a coherent tem-
poral sequence of shapes, such as gait sequences and lips
movement while talking. One of the examples shown in this
work is the upsampling of DS from lips movies, obtained
via interpolation in the feature space. Using the Gaussian
kernel in conjunction with an appropriate metric, such in-
terpolation is robust to local brightness changes.

A different approach here addressed considers each
whole DS as a high dimensional element, instead of treat-
ing it as a sequence of static shapes, see also [27]. We apply
this idea in conjunction with the Gaussian kernel to map the
DS into a lower dimensional feature space, where several
tasks can be performed, such as DS averaging [20], statisti-
cal modeling of DSs, classification of activities, and recon-
struction of partially occluded DSs.

The rest of the paper is organized as follows. Section
2 introduces some basics concepts about kernel methods.
Section 3 focuses on kernel methods applied to manifold
learning. In particular, approaches to the pre-image prob-
lem are discussed and introduced in this section. The novel
connection between out-of-sample and pre-image is pre-
sented in Section 4. First numerical results are presented in
Section 5. Section 6 shows the application of kernel based
techniques and our proposed pre-image method to the pro-
cessing of dynamic shapes. Conclusions and future work
are presented in Section 7.

2. Kernel methods basics

Let Ω = {x1, . . . , xn} ⊂ R
d be the set of training

points. The kernel is a function k : Ω × Ω → R, such
that there exist a mapping ϕ : Ω → H, where H is a Hilbert
space and the following inner-product relationship holds

k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 i, j = 1, . . . , n. (1)

Let K ∈ Mn×n be the matrix containing the kernel val-
ues, Kij = k(xi, xj). If this matrix is semidefinite positive,
then k is a kernel over the set Ω [24]. A mapping satisfy-
ing the dot product property (1) can be found by the eigen-
decomposition of the kernel matrix K:

K = UΛUT = UΛ
1
2 (UΛ

1
2 )T , (2)

where U is the matrix whose columns are the eigenvectors
φi, i = 1, . . . , n, and Λ = diag(λ1, λ1, . . . , λn) is the di-
agonal matrix of the eigenvalues in decreasing order. If we
define ϕ(xi) to be the i-th row of UΛ

1
2 , and since the eigen-

vectors are non-negative (positive semidefinite matrix), we
obtain the desired mapping:

ϕ(xi) = [
√
λ1φ1(xi),

√
λ2φ2(xi), . . . ,

√
λnφn(xi)].

(3)
The kernel function can then be considered as a general-

ization of the dot product, and therefore it is a measure of
similarity between the input points. The Hilbert space H is
called the feature space. When the algorithm to be applied
in the feature space uses only the corresponding dot prod-
ucts, only the kernel values are needed, without the need for
the explicit computation of the mapping functions. This is
called the kernel trick.

3. Kernel methods and manifold learning

The output of a manifold learning algorithm is often a
representation of the set of input points in a (usually) lower
dimensional space, in such a way that geometric properties
of interest of the underlying manifold are maintained. This
mapping is often found as the eigen-decomposition of a ma-
trix, often called the transition matrix. This matrix can be
viewed as a kernel matrix. As mentioned above, the out-of-
sample extension and pre-image problems arise naturally in
this framework.

Dimensionality reduction algorithms, such as LLE,
Isomap, Laplacian Eigenmaps, are in fact kernel methods.
In this paper we focus on the Gaussian kernel, as often done
in the literature, e.g. [7, 8, 25],

k(x, x′) = e−
‖x−x′‖2

2σ2 . (4)

The value of the σ parameter is very important. In order
to understand this parameter it is useful to see the Gaussian
kernel as a transition matrix in a random walk (up to proper
normalization) [17]. The parameter σ determines the dis-
tance of reachable neighbors in one single step of the ran-
dom walk. A small σ captures better the local structure of
the manifold. However if σ is too small, for a finite sample,
the points become disconnected. In [7, 17] for example, σ
is computed as the average of the distances to the nearest
neighbor, σ = 1

N

∑N
i=1 d(xi, xi,1), where xi,1 is the near-

est neighbor of xi. Similarly, in [18] σ is computed as the
smallest distance such that every point is at least connected
with one neighbor.

3.1. The Nystrom extension

Let x ∈ R
d be a new input point not in the training set.

The Nyström extension, [4], states that the j-th coordinate



of the kernel mapping ϕ for this point can be approximated
as:

ϕ̂j(x) =
1√
λj

n∑
i=1

k(x, xi)φj(xi) j = 1, . . . , n, (5)

or in vector form:

ϕ̂(x) =
1√
Λ
UT kx, (6)

where kx = [k(x, x1), k(x, x2), . . . , k(x, xn)], and 1√
Λ

stands for (
√

Λ)−1 = diag( 1√
λ1
, 1√

λ2
, . . . , 1√

λn
). In other

words, the new point x is mapped as a weighted linear com-
bination of the corresponding maps for the training points
xi. The weights are given, modulo normalization by the
eigenvalues, by the kernel relationship k(x, xi) represent-
ing the similarity between x and xi.

Observe that while extending the mapping, we also need
to extend the kernel. This is straightforward when the ker-
nel defined over Ω is simply a known function defined in
the ambient space R

d. In other cases the extension of the
kernel is not trivial. In [4] the authors propose extensions
for the kernels defined by LLE, Isomap, MDS, and Lapla-
cian Eigenmaps. These are data driven kernels, they are
functions kn : R

d → R that depend on the input points.
When the data is sampled from a distribution, it has been

shown [3], that the functions defined by the Nyström exten-
sion converge uniformly to the eigenfunctions of the limit
of the sequence of data driven kernels, given that this limit
exists and that their eigenfunctions also converge. This
asymptotic property makes the Nyström extension an ap-
pealing approach for the out-of-sample extension problem.
See [18] for related alternatives.

3.2. The pre-image problem

The pre-image of ψ ∈ H (feature space point) is a point
x ∈ R

d (original data space), such that ϕ(x) = ψ. Since
such a point x might not exist, the pre-image problem is ill-
posed. A way to circumvent this problem is to look for an
approximate pre-image, i.e. a point x ∈ R

d such that ϕ(x)
is “as close as possible” to ψ. Different optimality criteria
could be used, such as

Distance: x = arg min
x∈Rd

‖ϕ(x) − ψ‖2. (7)

Collinearity: x = arg max
x∈Rd

〈
ϕ(x)
‖ϕ(x)‖ ,

ψ

‖ψ‖
〉
. (8)

Mika et al. [21], present an analytic solution applying
the collinearity criterion for the Gaussian kernel (or other
radial basis function kernel). First, they assume that ψ is a
linear combination of the mappings of the training set, ψ =∑n

i=1 αiϕ(xi). Since the Gaussian kernel is a normalized

kernel, i.e. k(x, x) = 1 for all x ∈ R
d, the cost function in

(8) becomes:

〈ϕ(x),
n∑

i=1

αiϕ(xi)〉 =
n∑

i=1

αik(x, xi), (9)

where we used the dot product property of the kernel (1).
The maximum can be found by taking the gradient of this
expression, leading to the following expression for the opti-
mal x:

x =
∑n

i=1 αik(x, xi)xi∑n
i=1 αik(x, xi)

. (10)

This implicit equation can be solved by a fixed point itera-
tion, but suffers from local minima and instabilities [9].

In [9] an approximation to avoid the iteration is pro-
posed. The distance dH between the mapped points can
be computed in terms of the dot products, and therefore in
terms of the kernel,

dH(ϕ(x), ϕ(x′))2 = k(x, x)+k(x′, x′)−2k(x, x′). (11)

Since the Gaussian kernel is a normalized one, we obtain:

dH(ϕ(x), ϕ(x′))2 = 2(1 − k(x, x′)). (12)

This equation only holds for points in H that have an exact
pre-image, i.e. for the points that belong to the image of the
mapping, ϕ(Rd). However, in [9] the authors make the as-
sumption that ψ ≈ ϕ(x), and use this to estimate the kernel
values of x with the input points:

k̂(x, xi) =
1
2
(2 − dH(ψ,ϕ(xi))2) i = 1, . . . , n. (13)

Substituting this approximation in the iterative equation
(10) leads to a direct formula (which can be considered as a
first step in the iteration (10)).

In [16], the authors also use (13) to estimate the kernel
values, and use these values to compute the distance in the
input space between the searched pre-image x and the given
training points:

‖x−xi‖2 ≈ 2σ2 log(
1
2
(2−dH(ψ,ϕ(xi))2)) i = 1, . . . , n.

(14)
Finding x now reduces to a localization problem solved by
standard MDS [12]. This approach is not based in any of
the two optimality criteria mentioned above.

4. Pre-images via the Nyström extension

We now address the connections between the out-of-
sample and the pre-image problems. Observing the op-
timality criteria for the approximate pre-image (Eqs. (7)
and (8)), it is clear that if we know of a way of extend-
ing the mapping, we could find the pre-image optimizing



the corresponding cost function. Although we do not know
the exact (extended) mapping, we can approximate it with
the Nyström extension. If we rewrite (7) and (8) using the
Nyström extension to express ϕ(x), we obtain:

Distance: x = arg min
x∈Rd

∥∥∥∥ 1√
Λ
UT kx − ψ

∥∥∥∥
2

. (15)

Collinearity: x = arg max
x∈Rd

〈
1√
Λ
UT kx∥∥∥ 1√

Λ
UT kx

∥∥∥ ,
ψ

‖ψ‖

〉
. (16)

Working with the exact extension, both criteria are equiv-
alent for normalized kernels, as can be seen by expanding
the squared norm in Eq. (7):

‖ϕ(x) − ψ‖2 = 1 + 〈ψ,ψ〉 − 2〈ϕ(x), ψ〉. (17)

Since ψ is constant, minimizing the left-hand side of the
expression is equivalent to maximizing 〈ϕ(x), ψ〉.

This equivalence is no longer true when ϕ is approxi-
mated by the Nyström extension, the norm of ϕ̂(x) is not
necessarily 1. In fact, if the searched pre-image x is out-
side the range of the extension, ‖ϕ̂(x)‖ tends to zero. If
we compute the pre-image of a point ψ with a small norm
by minimizing the distance criterion, the pre-image x tends
to lie outside the range of ϕ̂. This important lack of nor-
malization has been ignored by the previously mentioned
pre-image algorithms.

To address this problem, we modify the distance crite-
rion by projecting ψ onto the unit sphere (normalized ker-
nel):

x = arg min
x∈Rd

∥∥∥∥ 1√
Λ
UT kx − ψ

‖ψ‖
∥∥∥∥

2

. (18)

Note that for the real mapping ϕ this problem is equivalent
to the original distance criterion (7), we are forcing x to stay
in the range of ϕ̂ without modifying the original problem.

Solving Eq. (18) for kx (the vector formed by k(x, xi))
gives an approximation for the optimal kernel vector. This
is a standard least squares problem, where the solution is
given (for example) by the Penrose-Moore pseudo-inverse.
Since U is a unitary matrix we obtain (compare with Equa-
tion (6))

k̂x = U
√

Λ
ψ

‖ψ‖ . (19)

This optimal estimate of kx has an intuitive interpretation.
Recall that the mapping of the training points is given by
the rows of U

√
Λ. Thus, the i-th component of k̂x can be

expressed as

k̂x(i) =
〈
φ(xi),

ψ

‖ψ‖
〉
. (20)

Thereby, estimating the kernel values as the dot product be-
tween the mapped points and the projection of ψ on the

unit sphere is equivalent to inverting the Nyström extension
(Equation (6)), showing the close connections between the
out-of-sample extension problem and the pre-image prob-
lem.

We could also try to find x as the point in the input space
whose kernel values are closer to the kernel vector estimate
given by Eq. (19):

x = arg min
x∈Rd

‖kx − k̂x‖2. (21)

This problem is not equivalent to (18). Therefore solving
directly for x in Eq. (18) will yield a solution whose kernel
vector will not necessarily be the closest one to k̂x.

In order to compare k̂N
x , the kernel estimated by our ap-

proach (19), and k̂D
x , the one proposed by [16] and [9], note

that

k̂D
x (i) =

1
2
(2 − dH(ϕ(xi), ψ)2)

=
1
2
(2 − 1 − 〈ψ,ψ〉 + 2〈ϕ(xi), ψ〉)

=
1
2
(1 − 〈ψ,ψ〉) + ‖ψ‖k̂N

x (i). (22)

where k̂·x(i) denotes the i-th component of vector k̂·x. The
term 1

2 (1 − 〈ψ,ψ〉) appears due to the assumption that
〈ψ,ψ〉 = 1, (wrongly) made implicitly by [9, 16] when ap-
plying the relationship between the distance dH and the ker-
nel given by Eq. (12). Of course if ϕ(x) ≈ ψ then ‖ψ‖ ≈ 1.
However, this is in general not true. Consider for example
the simple case in which ψ is an average of some mapped
points that lie in the unit sphere. Their average will not have
unity norm.

Once we have estimated k(x, xi), the similarity between
the pre-image x and the rest of the points xi, we must deter-
mine x. For this purpose we could solve (21). This would
yield an iterative scheme. Instead, we use the approxima-
tions proposed by [9, 16].

To summarize, by means of the Nyström extension, in
this section we showed the connections between the out-
of-sample and the pre-image problems. Using this plus a
proper handling of the vector norms in the Hilbert space, we
proposed new methods for computing the pre-image, based
on the novel computation of the kernel vector kx and the
approaches presented in [9] and [16].

5. Initial experimental results: Comparing the
methods

To evaluate our proposed technique, we first need to
define a measure of performance for the pre-image algo-
rithms. Let x ∈ R

n be any of the approximate pre-images
of ψ ∈ H. In accordance to (8), the performance is mea-



Range\ Pre-Image A B C D E

(0; 0.2) 0 0 0 0 3
(0.2; 0.4) 9 11 54 20 40
(0.4; 0.6) 37 54 39 52 42
(0.6; 0.8) 34 24 33 21 15
(0.8;∞) 20 20 19 7 0

(a) d = 2 and rσ = 1.

Range\ Pre-Image A B C D E

(0; 0.1) 60 65 62 65 65
(0.1; 0.2) 33 29 31 29 29
(0.2; 0.3) 4 4 4 4 5
(0.3; 0.4) 2 2 3 2 1
(0.4;∞) 1 1 0 1 0

(b) d = 2 and rσ = 5.

Range\ Pre-Image A B C D E

(0; 0.01) 0 0 0 0 0
(0.01; 0.02) 5 94 23 94 92
(0.02; 0.03) 57 6 64 6 8
(0.03; 0.04) 30 0 13 0 0
(0.04; ∞) 8 0 0 0 0

(c) d = 30 and rσ = 1.

Range\ Pre-Image A B C D E

(0; 0.005) 0 0 0 0 0
(0.005; 0.01) 1 39 1 39 38
(0.015; 0.02) 10 60 30 60 61
(0.02; 0.025) 44 1 50 1 1
(0.025;∞) 45 0 19 0 0

(d) d = 30 and rσ = 5.

Table 1. Results for the pre-image algorithms. Each table shows
the number of trials for which the collinearity error falls into the
corresponding range. The total number of runs was m = 100
(N = 800).

sured as the collinearity error between ψ and ϕ̂(x) (com-
puted using the Nyström extension):

ec(x) = 1 −
〈

ϕ̂(x)
‖ϕ̂(x)‖ ,

ψ

‖ψ‖
〉
. (23)

The algorithms to be compared include: A. Distance-
based pre-image [16], B. Direct formula approximation of
the iterative pre-image [9], C. Pre-image A with kx com-
puted inverting the Nyström extension as here proposed, D.
Pre-image B with kx computed inverting the Nyström ex-
tension as here proposed. We also compare against the iter-
ative pre-image method presented by Mika et al. [21], de-
noted by pre-image E. In order to see if the iteration im-
proves the results its initial value is set as the pre-image D.

Given the set of parameters d (the input space dimen-
sion), n (the number of training points), rσ (the number of
nearest neighbors for determining σ), andm (the number of
runs withm � n), the comparison protocol goes as follows:

1. Initialization: Randomly generate a set {xi} of n
points uniformly distributed in [0, 1]d, compute σ as
the average distance to the rσ-th nearest neighbors, and
compute the Gaussian kernel and the mapping ϕ(xi),
i = 1, . . . , n.

2. Evaluation: For j = 1, . . . ,m, pick a random point
ϕ(xj) ∈ {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}, define ψ as the
mean of k nearest neighbors of ϕ(xj), compute the
pre-image of ψ using each of the methods listed above,
map each pre-image back into the feature space us-
ing the Nyström extension, and finally compute the
collinearity error for each mapping.

Table 1 shows the comparison of the pre-images, for four
sets of parameters. For high dimensions, the algorithms B,
D and E significantly outperform the methods A and C.
There is an improvement in the results obtained with the ap-
proach [16] (pre-image A) if the kernel estimate by (19) is

used (pre-image C): Approximately in 75% of the trials us-
ing the Nyström “duality”-based kx yields an improvement
of about 10%. The pre-images B and D give similar results
and similar to E for high dimensions. Except in low dimen-
sion there is almost no improvement by using the fixed point
iterative pre-image E. The results are in general better when
the dimension of the input set is high. This behavior is due
to the way the σ parameter is computed. When the dimen-
sion of the input space increases, the distances between the
nearest neighbors increase in relation with the size of the
input set, thus the mapping becomes simpler, and thereby
easier to extend [18].

We also compare the pre-image algorithms performance
in image de-noising by kernel PCA [16, 21], using the
28 × 28 pixels MNIST handwritten digits database. The
training set was built with 30 images for each digit. Given a
new noisy image, de-noising is done by mapping it into the
feature space, then projecting the mapped image onto the
principal components of the training set, and finally com-
puting the pre-image. Figure 1 shows the results. It is clear
that pre-images B, D and E yield the best (and very similar)
results. This is in accordance with the experiment presented
in Table 1. Averaging the PSNR over the ten test digits gives
the results shown in Table 1(b).

(a) De-noising handwritten digits.

A B C D E PCA
14.62 19.74 19.31 20.48 19.50 17.17

(b) Average PSNR (dB)

Figure 1. Kernel PCA de-noising. 1(a) Each row corresponds to a
test digit. The columns are: original image, noisy image, result of
linear PCA, pre-images A to E respectively. 1(b) Averaged PSNR
for the test digits.

To conclude, the new technique for estimating the ker-
nel vector kx represents an improvement with respect to the
previous pre-image approaches. Pre-image D has overall
good results with low computational complexity and it is
theoretically founded.

6. Applications to dynamic shapes

Static shape statistics has been widely demonstrated to
be crucial for many computer vision tasks, such as shape-
based segmentation. When time is involved, dynamic shape
priors are proving to be very important also, for applications
such as video segmentation [6, 19, 22], tracking [27] and
activity recognition [11].



In this section we demonstrate the applicability of the
proposed kernel plus pre-image framework for learning
low-dimensional representations of dynamic shapes. We
exemplify with gait and lips movement data. All the pre-
images shown in this section are going to be computed us-
ing pre-image D.

Let S be a description of a shape, e.g. the signed distance
function to the boundary of the region. In this case the L2

distance between the signed distance functions can be used.
This is just one simple example here used for illustration
purposes. A different distance is used for the lips data. A
dynamic shape is a sequence of shapes, γ = {Si}i=1,...,l,
where l is the length of the sequence. When comparing
dynamic shapes, it is often desirable to have a dissimilar-
ity measure which is invariant to temporal misalignments
and warping. This can be obtained for example via clas-
sical dynamic time warping, e.g. [20], obtaining a distance
dDS(·, ·) between two dynamic shapes, computed using any
given distance d(·, ·) between two static shapes.

6.1. Gait data

In this example we use the proposed approach for dy-
namic shape analysis of gait. The used dataset contains the
same person performing different gait types: walking, jog-
ging, running, running lifting the heel, and running lifting
the knee. The data was obtained by filming a single person
performing these activities with a fixed background. The
silhouettes of the person in each frame is then extracted as a
binary image of 65× 45. The total database consist in 2380
segmented shapes.

Following [15], we consider a semicycle as a basic unit
for processing. Let us denote by Si the shape extracted from
the i-th video frame, with i = 1, . . . , NF , being NF the
number of frames. In order to define the boundaries of each
semicycle, we choose a reference shape Sr, and then com-
pute the sequence of distances di as the (L2) distance from
the i-th shape to the reference shape. Boundaries between
adjacent semicycles are given by the local minima of this se-
quence. The selection of the reference frame is important,
since it simplifies the search for the local minima. As in
[15] we found that the best results are attained choosing the
moment when the legs are aligned as the reference. There
are 142 semicycles in the database.

In order to compare the distance between the semicycles,
we follow the approach of [20]. Instead of aligning/warping
each pair of whole dynamic shapes before comparing them,
we align the semicycles against a reference one. First,
this has a computational benefit, being NSC the number
of semicycles, we perform (dynamic time warping) DTW
NSC times, instead of N2

SC times. However our main rea-
son for this partition will become apparent after the follow-
ing discussion.

The Gaussian kernel can be computed just using a dis-

tance matrix among the semicycles. On the other hand,
for applications that need to compute pre-images, the input
space needs a vector space structure. Therefore, we want
all our aligned semicycles to have the same length. This is
easier to achieve by aligning all the sequences to a reference
semicycle.

DTW performs the alignment repeating elements in the
sequence that is evolving faster, in order to make it wait
for the other sequence. This intuitive notion of speed is
local, therefore elements can be added to both sequences.
However if one of these sequences is overall slower, it is
likely that DTW will not add any elements to it, and the final
length of the aligned sequences will be that of the slowest
one. This suggest to choose the longest semicycle as the
reference one. Still we can not ensure that any elements will
not be added to the longest sequence, increasing the final
length. We overcome this problem removing the repetitions
in the reference frame, which can be easily achieved in the
DTW computation.

Following these preprocessing steps, we are ready to
proceed with the dynamic shape analysis. The set of dy-
namic shapes, with the metric dDS obtained from the DTW,
constitutes a dynamic shape space. The dimensionality of
this space is l×mr×mc, where l is the length of the aligned
semicycles and mr and mc are the number of rows and
columns of the signed distance functions used to represent
the shapes. In our examples, l = 19, mr = 65, mc = 45.
We use the Gaussian kernel in order to reduce dimension-
ality. The dimensionality of the mapped set depends on the
decay of the eigenvalues of the kernel matrix K. The pa-
rameter σ plays an important role in this issue. Following
[7, 17], we again compute σ as the average of the distances
to the nearest neighbors.

This concludes the key processing to map the dynamic
gaits to the feature Hilbert space. Applications such as clus-
tering or classification can be done in this feature space.
These kind of applications do not necessarily need the com-
putation of pre-images, and might not even need the com-
putation of the map itself following the kernel trick. We
thereby center our attention in applications where we can
demonstrate the use of the proposed pre-image framework,
such as dynamic shape de-noising, reconstruction, and visu-
alization. We select to exemplify the cases of DS averaging
and reconstruction from occlusions.

Figure 2 shows the pre-images of the averages of feature
space points corresponding to five types of gait (the actual
pre-images are thresholded to yield a binary image). Each
average was computed with 10 sequences. Note that the
results correspond to recognizable gait sequences of each
type.

The process of reconstructing an occluded dynamic se-
quence is as follows. First, the new sequence is mapped
into the feature space using the Nyström extension. This is



Figure 2. Pre-images of the averages of 10 dynamic shapes of a
person performing different types of gait computed in the feature
space. Each row corresponds to a different activity: Walking, jog-
ging, running, running lifting the knee, running lifting the heel.

of course done after the training set was used to construct
the map and the distance of the new dynamic shape to the
training set is computed using the semicycles-based DTW
as described above. Then, this mapped point is projected
in the subspace spanned by its nearest neighbors. The pre-
image of the projected point is then a reconstructed version
of the original sequence. The results of this simple tech-
nique are displayed in Figure 3.

6.2. Lips data

We now use the dataset collected by Aharon & Kimmel,
[1], to exemplify the use of the proposed pre-image method
for upsampling of lips movement sequences. This dataset
consists of sequences of images of the mouth of a single
subject while pronouncing different syllables. Each sylla-
ble is a combination of a consonant with a vowel. There are
20 consonants and 6 vowels. Each sequence has approxi-
mately 30 frames. This yields a total number of more than
3400 frames. For more details about the segmentation and
preprocessing of the images refer to [1].

In this example we consider each frame as a point in a
high dimensional space. A syllable is then a curve in the
manifold where these high dimensional points live.

To compare frames, we use the JBB metric, [1, 14],
which is less sensitive to lighting changes. Using this metric
between frames, we compute the kernel matrix and perform
the (Gaussian) embedding. Once the data points are mapped
into the feature space, their structure tends to represent the
different positions of the lips, robustly to lighting changes.

For upsampling a new sequence, we first use the
Nyström extension to map the available new samples onto
the feature space, where we simply perform linear interpo-
lation, and then compute the pre-image of the interpolated
points with our proposed approach. To see the invariance
to the strong lighting changes, we intentionally distort the
samples that are going to be interpolated, simulating fast
local brightness changes.

Figure 4 shows the result of upsampling a sequence by
a factor of two. The sequence was downsampled and the
even frames considered as missing frames, whereas the

brightness-distorted odd frames were used to interpolate. It
can be seen that linearly interpolating in the kernel space
yields results without the brightness distortions that are
present when working in the image space.

Figure 4. Results of the interpolation for a test sequence. Top row,
original sequence. Second row, even frames interpolated in the
feature space. Third row, interpolation in the input space.

7. Conclusions and future work

In this paper we presented a new approach for comput-
ing the pre-image of the mapping associated with kernel
methods. Following the Nyström extension we showed the
analogy between the out-of-sample and the pre-image tasks.
This connection not only provided a new technique for pre-
image computation, but also lead to new insights into the
problem and new connections with prior techniques. As a
consequence of this approach we derive a new way of es-
timating the kernel values between the unknown pre-image
and the given training points. We compared the proposed
frameworks with their corresponding counterparts in the
existing literature, both numerically and perceptually. De-
pending on the parameters of the problem (width of the ker-
nel, size and dimension of the training dataset), our results
are comparable, if not better than those of the previous ap-
proaches. We presented simple uses of the method for dy-
namic shapes.

We are currently working on exploiting the proposed
framework with different kernels and distance metrics be-
tween static and dynamic shapes. We are also pursuing the-
oretical estimates related to the accuracy of the Nyström
based pre-image computation. This is an interesting issue
related to the conditions under which the point cloud cap-
tures the intrinsic geometry of the manifold as well as with
the ability of the mapping to learn it from the training set.
Results in these directions will be reported elsewhere.
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