english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/38712 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCasas, Pedroes
dc.contributor.authorVaton, Sandrinees
dc.contributor.authorFillatre, Lioneles
dc.contributor.authorNikiforov, Igores
dc.date.accessioned2023-08-01T20:33:27Z-
dc.date.available2023-08-01T20:33:27Z-
dc.date.issued2010es
dc.date.submitted20230801es
dc.identifier.citationCasas, P., Vaton, S., Fillatre, L., Nikiforov, I. Optimal volume anomaly detection and isolation in large-scale IP networks using coarse-grained measurements [Preprint] Publicado en Computer Networks, 2010, v. 54, no. 11. https://doi.org/10.1016/j.comnet.2010.01.013es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/38712-
dc.description.abstractRecent studies from major network technology vendors forecas t the advent of the Exabyte era, a massive increase in network traffic driven by high-definition video and high-speed access technology penetration. One of the most formidable difficulties that this forthcoming scenario poses for the Internet is congestion problems due to traffic volume anomalies at the core network. In the light of this challenging near future, we develop in this work different network-wide anomaly detection and isolation algorithms to deal with volume anomalies in large -scale network traffic flows, using coarse-grained measurements as a practical constraint. These algorithms prese nt well-established optimality properties in terms of false alarm and miss detection rate, or in terms of detection/isolation dela y and false detection/isolation rate, a feature absent in previous works. This represents a paramount advantage with re spect to current in-house methods, as it allows to generalize results independently of particular evaluations. The det ection and isolation algorithms are based on a novel linear, parsimonious, and non-data driven spatial model for a large -scale network traffic matrix. This model allows detecting and isolating anomalies in the Origin-Destination traffic flows from aggregated measurements, reducing the overhead and avoiding the challenges of direct flow measurement. O ur proposals are analyzed and validated using real traffic and network topologies from three different large-scale IP backbone networks.es
dc.languageenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectNetwork Monitoring and Traffic Analysises
dc.subjectTraffic Matrixes
dc.subjectNetwork Traffic Modelinges
dc.subjectOptimal Volume Anomaly Detection and Isolationes
dc.subject.otherTelecomunicacioneses
dc.titleOptimal volume anomaly detection and isolation in large-scale IP networks using coarse-grained measurementses
dc.typePreprintes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentTelecomunicaciones-
udelar.investigation.groupAnálisis de Redes, Tráfico y Estadísticas de Servicios-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
CVFN10.pdf982,99 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons