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Abstract

Recent studies from major network technology vendors forecast the advent of the Exabyte era, a massive increase in
network traffic driven by high-definition video and high-speed access technology penetration. One of the most formidable
difficulties that this forthcoming scenario poses for the Internet is congestion problems due to traffic volume anomalies
at the core network. In the light of this challenging near future, we develop in this work different network-wide anomaly
detection and isolation algorithms to deal with volume anomalies in large-scale network traffic flows, using coarse-grained
measurements as a practical constraint. These algorithms present well-established optimality properties in terms of false
alarm and miss detection rate, or in terms of detection/isolation delay and false detection/isolation rate, a feature absent
in previous works. This represents a paramount advantage with respect to current in-house methods, as it allows to
generalize results independently of particular evaluations. The detection and isolation algorithms are based on a novel
linear, parsimonious, and non-data driven spatial model for a large-scale network traffic matrix. This model allows
detecting and isolating anomalies in the Origin-Destination traffic flows from aggregated measurements, reducing the
overhead and avoiding the challenges of direct flow measurement. Our proposals are analyzed and validated using real
traffic and network topologies from three different large-scale IP backbone networks.

Key words: Network Monitoring and Traffic Analysis, Traffic Matrix, Network Traffic Modeling, Optimal Volume
Anomaly Detection and Isolation.

1. Introduction

After a brief mid-decade slowdown, IP traffic will nearly
double every two years in the near future. The overall IP
traffic is expected to grow from 6.6 exabytes per month
in 2007 to nearly 29 exabytes per month by 2011 (1 ex-
abyte = 1018 bytes), more than quadrupling in less than
a half decade [1]. Simultaneously, the evolution of access
technologies and the development of optical access net-
works (Fiber To The Home technology) will dramatically
increase the bandwidth for end-users, imposing serious and
unforeseen problems at the core network, so far assumed
infinitely provisioned. One of the most difficult challenges
for network operators will be to correctly manage the large
and unexpected congestion problems at the core network
caused by volume anomalies. These observations are part
of the key findings provided by Cisco’s global IP traffic
forecast 2006-2011 [1, 2].

Volume anomalies represent large and sudden link load
changes due to strong variations in traffic flows. These
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variations arise from unexpected events such as flash
crowds, network equipment failures, network attacks, and
external routing modifications and traffic shifts. Large-
scale monitoring systems are currently deployed in ISP
(Internet Service Providers) and large enterprise networks
to fight back against these unexpected events. In this work
we focus on two central aspects of traffic monitoring for
volume anomaly detection: (i) the rapid and accurate de-
tection of volume anomalies and (ii) the isolation of the
origins of the detected anomalies.

The first issue corresponds to the anomaly detection
field, a difficult and extensively studied problem. Anomaly
detection in data networks consists of identifying pat-
terns that deviate from normal traffic behavior. Differ-
ent types of network anomalies can be detected depending
on the monitored data. We particularly focus on device-
level data. Device monitoring consists in using the widely
spread Simple Network Management Protocol (SNMP) to
periodically collect management device readings, known
as Management Information Base (MIB) variables. Every
network device has a set of MIB variables that are specific
to its functionality, like memory usage, CPU load, and in-
terface bandwidth usage among others. SNMP is unique in
that it is supported by basically every device in an IP net-
work. SNMP is the most basic means of data collection
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for traffic analysis and provides the most coarse-grained
information. At the same time it is the technique that
causes the least measuring overhead, and thus represents
an appealing choice for large-scale monitoring. However,
it also has practical limitations, like missing data due to
the use of the unreliable UDP transport protocol to export
readings, or lack of readings synchronization in large-scale
networks.

In this work we focus on network-wide volume anomaly
detection, analyzing network traffic at the Origin-
Destination (OD) flow level. An OD flow represents the to-
tal aggregated traffic flows transmitted between an ingress
and an egress node or PoP (Point of Presence) in a net-
work. A network-wide view of OD flows within a network
is typically described by a Traffic Matrix (TM); a TM rep-
resents the total volume of traffic transmitted between ev-
ery pair of ingress and egress points of a network. In prac-
tice, the term “volume of traffic” refers to the cumulative
number of bytes between two consecutive measurements.
The TM is a volume representation of OD flows traffic,
and thus the types of anomalies we can expect to detect
from its analysis are volume anomalies. Figure 1 depicts
the occurrence of short-lived (a couple of hours at most)
and long-lived volume anomalies in 1(a) four monitored
links from a commercial international Tier-2 network and
1(b) several links from the Abilene network, an Internet2
backbone network in the US. As each OD flow typically
spans multiple network links, a volume anomaly in one
single OD flow is simultaneously visible on several links.

The algorithms that we develop in this work make use
of standard SNMP per-link byte counts to detect volume
anomalies in the TM. Link byte counts represent the ac-
cumulated number of bytes that cross through the link
between two consecutive readings. From now on, we shall
use the term “SNMP measurements” as a reference to this
link data. The use of this aggregated coarse-grained data
allows to conceive light and easy-to-deploy anomaly detec-
tion/isolation algorithms. However, it poses a challenging
problem: the number of links in a network is generally
much smaller than the number of OD flows, and thus the
TM is not directly observable from link measurements.

The second issue that we address is the isolation of the
origins of a detected anomaly. The isolation of an anomaly
consists in inferring the exact location of the problem from
a set of observed anomaly indications. This represents
another critical task in network monitoring, given that a
correct isolation may represent the difference between a
successful or a failed countermeasure. In this work we
assume that traffic anomalies are exogenous unexpected
events (flash crowds, external routing modifications, exter-
nal network attacks) that significantly modify the volume
of one or multiple OD flows within the monitored network.
For this reason, the isolation of the anomaly consists in
finding the OD flows that suffer such a variation, referred
from now on as the anomalous OD flows.
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(a) One week of traffic in a Tier-2 ISP network,
corresponding to 1008 consecutive measurements.
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(b) One week of traffic in the Abilene network,
corresponding to 2016 consecutive measurements.

Figure 1: Network volume anomalies in large-scale IP networks.
Each measurement corresponds to the cumulative number of bytes
between two consecutive SNMP readings.

1.1. Related Work

The anomaly detection literature treats the detection of
general anomalous traffic behaviors [14, 25, 26, 28, 31, 33]
as well as specific kinds of network and traffic anomalies.
A basic list includes flash crowd events [12, 13], network
failures [9, 10, 11, 15, 30], network attacks [16, 18, 19, 32],
and large traffic shifts [20] among others. The majority of
these works operate on individual and independent time
series, analyzing traffic at a particular network link, par-
ticular device readings or particular packet characteristics
with classical forecasting and outliers analysis methods.
For example, [15] uses exponential smoothing EWMA and
Holt-Winters forecasting techniques to detect anomalous
behaviors in router readings. [14] analyses frequency char-
acteristics of flow traffic and SNMP measurements using
a wavelets based filtering approach, exposing anomalies as
sharp variations in the filtered data variance. [17] builds
compact summaries of flow traffic data using the notion
of sketch, applying then the same forecasting techniques
used in previous works (ARIMA, Holt-Winters, etc.) on
top of such summaries to detect significant forecast errors.
[16] uses spectral analysis techniques over TCP flows for
DoS (Denial of Service) detection, using traffic traces from
a single network link. [20] uses BGP (Border Gateway
Protocol) and SNMP data streams to detect large traffic
shifts, using EWMA, seasonal analysis and Holt-Winters
over single time series to filter periodic and trend compo-
nents, detecting anomalies as impulse functions. [12] char-
acterizes flash crowds in Web servers and provides a net-
work aware clustering approach to distinguish these events
from DoS attacks, proposing an adaptive CDN (Content
Delivery Network) architecture to fight back against these
extreme events. [30] represents one of the first papers that
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uses multiple time series for anomaly detection, synthesiz-
ing information from multiple MIB variables at a single
router to improve results. Contrary to these works, we
treat the anomaly detection problem from a network-wide
perspective, exploiting spatial correlations across the time
series of traffic from all the links of a network.
Network-wide anomaly detection has also been treated

in different works [25, 26, 27, 28, 31, 33]. The methods
proposed in [26, 27, 28] make use of rich flow and packet
data to detect anomalies, but this data that can be too
costly to collect and to process [3]. [25] detects and classi-
fies anomalies by jointly analyzing the distribution of OD
flows and traffic features (IP addresses and ports). The au-
thors use the technique of Principal Components Analysis
(PCA) and the subspace method previously introduced in
the field of fault diagnosis for chemical engineering pro-
cesses [21, 22] to analyze the ensemble of OD flows and
the corresponding traffic features in a network. [27] uses
the idea of sketch proposed in [17] and the PCA approach
to identify anomalous traffic flows. [28] proposes a re-
cursive method to detect anomalies in multivariate time
series, which is validated using the number of packets and
the number of individual IP flows aggregated in a TM.
On the contrary, our methods make use of easy to col-
lect coarse-grained SNMP link data to detect and isolate
volume anomalies in OD flows.
The use of SNMP measurements to detect volume

anomalies in OD flows has been considered in [25, 31, 33],
but none of these works has provided a complete and reli-
able solution to the problem. [31] uses a Kalman-filtering
approach to track the evolution of OD flows from SNMP
measurements, detecting anomalies as large prediction er-
rors. The method requires a long training phase where
direct anomaly-free OD flow measurements are used to cal-
ibrate the underlying model. As we have recently shown
[8], the assumed model has a particular structure that may
require several periodical recalibrations to provide reliable
results, which makes the method too costly to implement
from a practical point of view. Besides, the paper does not
tackle the anomaly isolation problem. Only [25, 33] treat
the problem of both anomaly detection and isolation in
OD flows from SNMP measurements. The authors of [25]
use the PCA approach and the subspace method proposed
in [21, 22] to separate SNMP measurements into a normal
subspace and an anomalous subspace, where anomalies are
detected. The use of the PCA technique and the subspace
method has probably become the most famous approach
for network-wide anomaly detection in recent years. How-
ever, the approach is a pure data-driven in-house method,
and recent works [28, 29] have shown categorical evidence
about its serious shortcomings for anomaly detection and
isolation in data networks. Finally, our approach falls into
the same category as [33], where anomalies are inferred
from aggregated data by combining network tomography
and anomaly detection techniques. [33] uses similar meth-
ods applied in previous works to detect volume anomalies
in OD flows: Fourier and Wavelet analysis, ARIMA mod-

eling and PCA decomposition. The isolation of anomalies
is performed with different heuristics which are not evalu-
ated from a complexity perspective and that might be too
time-consuming for on-line application; in fact, all evalua-
tions performed in [33] are conducted off-line over individ-
ual datasets spanning one week of traffic each. Unlike that
work, we provide detection and isolation algorithms that
can be applied in an on-line fashion with solid theoretical
support on their optimality properties.

1.2. Contributions of the Paper

Despite the large literature in the field, we can see that
to date there is no single approach to correctly detect and
isolate traffic anomalies in the TM from SNMP measure-
ments in an on-line fashion. A reliable implementation
of such approach would be highly beneficial for network
operators, providing a light and easy to deploy first-line
monitoring tool for on-line anomaly detection and isola-
tion.
In this paper we present a complete approach that meets

these criteria with solid optimality properties in terms of
false alarm and miss detection rate, or in terms of detec-
tion/isolation delay and false detection/isolation rate, a
feature absent in previous works. Optimality support is
fundamental in the conception of general algorithms, not
tied to any particular network and more important, in-
dependent of particular evaluations in particular network
and traffic scenarios. In-house methods may work rather
well in certain scenarios, but without a principled and gen-
eralizable support they can be easily rebutted.
We begin by introducing a new parsimonious, linear and

parametric model for the anomaly-free TM. This model
presents important advantages: (i) it uses exclusively
easily-available coarse-grained SNMP measurements, sim-
plifying practical issues; (ii) it is non data-driven and as
we will show through evaluation with real data, it is sta-
ble in time, making it possible to design reliable anomaly
detection methods on top of it; (iii) it is easy to calibrate
and needs a very small amount of anomaly-free data to
provide solid results; (iv) using this parsimonious model
we can remove the anomaly-free traffic from the anomaly
detection problem, thus treating the detection and isola-
tion of volume anomalies as a sequential change detec-
tion/isolation problem with a nuisance parameter. This
problem has been previously studied with some significant
results [40, 41, 42]. In our particular case, this allows to
design optimal algorithms for volume anomaly detection
and isolation, using the principles of the decision theory.
Based on this traffic model, we propose two different op-

timal algorithms for volume anomaly detection and isola-
tion. The first algorithm is designed for optimal detection,
maximizing the correct detection for a bounded false alarm
rate. The second algorithm permits to simultaneously de-
tect and isolate a particular anomalous OD flow within the
TM, minimizing the maximum mean detection/isolation
delay for given bounds in the false isolation and false alarm
rates. Since a few anomaly-free SNMP measurements are

3



sufficient to obtain a reliable model for the anomaly-free
TM, we claim that the proposed methods are well adapted
to dynamic routing scenarios and non-stationary traffic,
but this case is out of the scope of the current study.
To provide strong evidence on the effectiveness of our

methods, all the proposed algorithms are validated using
real traffic data from three different backbone networks:
the Internet2 Abilene backbone network, the European
GEANT academic network, and a commercial interna-
tional Tier-2 network. Additionally, we compare our algo-
rithms against well-known works in the field, showing that
similar or even better performance can be achieved with
thorough theoretical foundation. This work represents a
continuation of our previous works on traffic modeling and
volume anomaly detection [4].
The remainder of this paper is organized as follows.

In Section 2 we present a linear parsimonious model to
describe the anomaly-free OD flows traffic. Section 3
presents an optimal volume anomaly detection algorithm
that maximizes the power of the test for a given false
alarm rate. Section 4 presents a recursive algorithm for
simultaneously detecting and isolating volume anomalies
in single OD flows, minimizing the maximum mean de-
tection/isolation delay for bounded false alarm and false
isolation rates. In Section 5 we present an in-depth val-
idation and evaluation of the traffic model and the de-
tection/isolation algorithms, comparing their performance
against well-known algorithms previously proposed. Sec-
tion 6 discusses complexity and implementation issues of
the proposed algorithms. Finally, Section 7 concludes this
work.

2. Linear Parsimonious Traffic Matrix Modeling

The first and maybe the most critical step in anomaly
detection is to conceive an accurate and stable traffic
model for what constitutes an anomaly-free behavior. In
this work we intend to detect volume anomalies in a back-
bone TM from SNMP measurements, thus we develop a
traffic model for the anomaly-free behavior of the OD
flows within a large-scale IP network. Throughout the
paper, the vector Xt = {xt(1), .., xt(m)}T represents the
value of the TM at time t, where xt(k) stands for the
traffic volume of each OD flow k = 1..m at measure-
ment time t. Similarly, the SNMP measurements vector
Yt = {yt(1), .., yt(r)}

T represents the links traffic volume
at time t, where yt(i) represents the total traffic volume in
link i = 1..r at measurement time t. The TM Xt and the
links traffic Yt are related through the routing matrix R:

Yt = RXt (1)

where Rij is equal to 1 if OD flow j traverses link i
and 0 otherwise. Note that we have intentionally omitted
the subscript t in the routing matrix R; in this work we
assume that R is constant in time. In Section 6 we discuss
the implications of this choice.

Monitoring the behavior of Xt based on R and Yt data
represents a poorly posed problem, because the number
of unknown OD flows is much larger than the number of
links,m >> r. To solve this problem, we propose a spatial,
linear, and low-dimensionality representation of Xt in the
absence of volume anomalies. The basic idea of this model
is that the traffic flows Xt, sorted from smallest to largest
traffic volume can be decomposed at every time t over a
known family of q basis functions (columns of the matrix
S), S = {s(1), s(2), . . . , s(q)}, with the great virtue that
q << m, even several orders of magnitude smaller (in the
evaluation we show that q < 10 even for a network with
more than m > 1000 OD flows). Therefore, we assume
that Xt can be expressed as:

Xt = Sµt + ξt (2)

where ξt is a white Gaussian noise with covariance ma-
trix Σ = diag(σ2

1 , . . . , σ
2
m) that models the natural vari-

ability of the OD flows together with the modeling errors.
The vector µt = {µt(1) . . . µt(q)}

T
is an unknown time-

varying vector which describes the OD flows intensity dis-
tribution with respect to the set of vectors s(i). We found
in [8] that the order of OD flows sorted from smallest to
largest traffic volume remains reasonably stable in time
for several days in various large-scale networks, different
not only in the topology but also in the nature of traffic.
Figure 2 shows the OD flows traffic for (a) the Abilene
network, (b) the GEANT network, and (c) a commercial
Tier-2 ISP network, sorted from smallest to largest traffic
volume, for different times t.
The sorted volumes of OD flows can be approximated by

a non-decreasing function with a certain smoothness. The
curve obtained by interpolating this function is parameter-
ized by using a polynomial splines approximation. Given
the shape of this curve, a cubic splines approximation is
used. The spline basis is finally designed to approximate
the sorted volume of OD flows by usingm points uniformly
chosen in the interval [1;m]. The vectors s(i) in S form
the set of basis vectors that describe the spatial distribu-
tion of the traffic. From now on, we shall refer to this
Spline-Based model as the SB model.
To illustrate the structure of the matrix S, let us con-

sider the polynomial splines of degree p = 3 with p − 1
continuous derivatives and two integer knots k1 and k2
such that 1 < k1 < k2 < m. A natural cubic spline c(x)
with the two knots k1 and k2 has the form:

c(x) = µ(1) + µ(2)x+ µ(3)x2 + µ(4)x3

+µ(5) (x− k1)
3
+ + µ(6) (x− k2)

3
+

where x belongs to a real interval [a; b] containing [1;m],
i.e. [1;m] ⊆ [a; b], the reals µ(i) are the spline coefficients
a (x)+ = max{0, x}. The interested reader can find addi-
tional information on splines representations in [34]. Then,
the sampled vector c = (c(k))1≤k≤m verifies c = V µ where
the matrix V is given by:
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Figure 2: Approximation of real OD flows (dashed lines) by the spline-based (SB) model (full lines) in 3 operational networks. xt(k) is the
real volume of OD flow k. x̂SMLE

t
(k) stands for the estimated OD flow k using the SB model, defined in equation (6). xTGE

t
(k) is the

estimated OD flow k using the tomogravity estimation method, introduced in [5].
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The matrix S is obtained from V by permuting the rows
according to the OD flows sorting order: the i-th row of S
is the j-th row of V , provided that the OD flow i becomes
the j-th OD flow after sorting from smallest to largest OD
traffic volume.
It should be clear to the reader that the SB model can-

not be generalized to all network topologies and scenarios,
but that it holds for networks with large traffic aggrega-
tion. In the evaluation we show that this model provides
accurate results for different network topologies and traf-
fic scenarios, including a commercial network, the GEANT
academic network, and Abilene, a network topology/traffic
that is usually used as benchmark regarding TM stud-
ies. The dashed lines in figure 2 depict the value of each
sorted OD flow xt(k), k = 1 . . .m, the full lines represent
the splines approximation of the sorted flows. In order
to appreciate the time stability of this approximation, the
curves are plotted for various consecutive days. From (1)
and (2), we can express links traffic as a function of µt:

Yt = Gµt + υt, (3)

where G = RS and υt ∼ N (0,Φ), with Φ = RΣRT . It
is assumed that G is a full column rank matrix. In fact,
since the number of columns inG is very small, the product

RS and its rank can be computed very fast. To simplify
notation and computations, we introduce the standardized
measurements vector Zt:

Zt = Φ− 1

2Yt = Hµt + δt, (4)

where H = Φ− 1

2 G, δt ∼ N (0, Ir) and Ir is the r × r
identity matrix. The purpose of this transformation is
simply to reduce a given noise covariance matrix to the
identity one.
If the covariance matrix Σ is unknown some additional

experiments should be done. The solution consists in com-
puting an empirical covariance matrix Σ̂ from a few mea-
surements; in Section 5.2 we show that using just 1 hour
of SNMP measurements is enough to provide proper re-
sults. Some very basic results on the estimation of Σ̂ can
be found in [35].
In this work we use this low-dimensionality model to

filter the contribution of the anomaly-free traffic into the
SNMP measurements, producing residuals sensitive to vol-
ume anomalies. As we explain in the following section, we
treat the detection of volume anomalies as a statistical de-
cision problem with a nuisance parameter, represented by
the anomaly-free traffic. This allows to infer anomalies in
the TM directly from aggregated data, without the prelim-
inary TM estimation step. This approach clearly improves
the accuracy and reduces the detection delay, because it
does not drag possible errors from previous steps. Never-
theless and in order to validate the SB traffic model, we
will use it to infer a TM from SNMP measurements in the
validation Section 5.2.
The TM can be easily inferred from SNMP measure-

ments using equation (4). We particularly use a maximum
likelihood estimation approach to compute an estimated
traffic matrix. The maximum likelihood estimate presents
well established statistical properties [35]. Since the traffic
linear model (4) is Gaussian, the maximum likelihood es-
timate of µt, namely µ̂MLE

t corresponds to the least mean
squares estimation:

µ̂MLE
t = (HTH)−1HT Zt (5)
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This finally leads to the estimate of the traffic matrixXt,
which we will refer as the Spline-based Maximum Likeli-
hood Estimate (SMLE) X̂SMLE

t , defined by:

X̂SMLE
t = S µ̂

ML
t =

(
S(HTH)−1HT Φ− 1

2

)
Yt (6)

3. Optimal Volume Anomaly Detection

The goal of the proposed detection algorithm is to de-
tect the presence of an additive anomaly ϕ in one or more
OD flows of the traffic matrixXt from the SNMP measure-
ments vector Yt, with the highest probability of detection
for a given upper bounded probability of false alarm. The
detection of this anomalous variation can be treated as a
hypothesis testing problem, considering two possible traf-
fic situations or hypotheses: the null hypothesis H0, where
OD flows are anomaly-free, and the alternative hypothesis
H1, where OD flows present an anomaly and thus traffic is
no longer characterized by our anomaly-free-traffic model
(3). For every new SNMP measurement, the method has
to choose between H0 and H1 with the “best detection
performance”. We shall explain below what do we mean
by best detection performance.
In order to continuously adapt the decision thresholds of

the method, the previously introduced anomaly-free-traffic
model is slightly modified, explicitly considering the tem-
poral variation of the covariance matrix Σ. The Gaussian
noise ξt is now assumed to have a covariance matrix γ2

tΣ;
the matrix Σ = diag(σ2

1 , . . . , σ
2
m) is assumed to be known

and stable in time. The scalar γt is unknown and serves
to model the mean level of OD flows volume variance.
Considering equation (4), the previous hypothesis test-

ing problem can be formulated as follows:

H0 = {Z ∼ N (ϕ+Hµ, γ2
t Ir); ϕ = 0, µ∈R

q} (7)

H1 = {Z ∼ N (ϕ+Hµ, γ2
t Ir); ϕ 6=0, µ∈R

q} (8)

where ϕ represents an anomaly. Note that we have in-
tentionally removed the time index t from Z and µ, explic-
itly stating that the test is applied for a single measure-
ments vector Z = Zt at a certain time t. In the anomaly
detection problem, the modeled anomaly-free traffic µ is
considered as a nuisance parameter since (i) it is com-
pletely unknown, (ii) it is not necessary for the detection
and (iii) it could possibly mask the anomalies. In order to
remove the nuisance parameter from the detection prob-
lem, the standardized measurements vector Z is projected
onto the left null space of H , using the projection matrix

P⊥
H = Ir − H(HTH)

−1
HT . Briefly speaking, we remove

the “interference” of µ from the problem. For this rea-
son it is possible to chose between H0 and H1, provided
that the projection of the anomaly ϕ onto the left null
space of H is nonzero. For example, suppose that a vol-
ume anomaly of size θ occurs in OD flows j and k; then
it is easy to see that ϕ = θΦ− 1

2 r, where r stands for the

sum of the normalized columns rj and rk of the routing
matrix R.

The quality of a statistical test is defined by the false
alarm rate and the power function. The above mentioned
testing problem is difficult because (i) H0 and H1 are com-
posite hypotheses and (ii) there is an unknown nuisance
parameter µ. A composite hypothesis refers to a statistical
hypothesis that does not completely specify the probabil-
ity distribution of the test statistic, i.e. it does not reduce
to a single point into the probability space. There is no
general way to test between composite hypotheses with a
nuisance parameter.

Let Kα be the class of tests with an upper bounded
maximum false alarm probability, Kα = {φ :
sup

µ
Prϕ=0,µ(φ(Z) = H1) 6 α}, 0 < α < 1. The proba-

bility Prϕ=0,µ stands for the measurements vector Z being
generated by the distribution N (Hµ, γ2

t Ir), and α is the
prescribed upper bound for the probability of false alarm.
The power function or hit rate is defined by the probabil-
ity of correct detection βφ(ϕ,µ) = Prϕ 6=0,µ (φ(Z) = H1).
A priori, the power function depends on the parameter ϕ
as well as on the nuisance parameter µ, which is highly
undesirable.

In this work we use the statistical test φ∗ : R
r 7→

{H0,H1} of [38, 39], inspired by the fundamental paper
of Wald [37]. To solve this problem, Wald [37] proposes
a test φ∗(·) ∈ Kα, which has uniformly best constant
power (UBCP) in the class Kα over a certain family of
surfaces S. The adaptation of Wald’s theory to the prob-
lem with nuisance parameters in the case of problem (7) -
(8) has been done in [38, 39] by using the theory of invari-
ant tests. Here, the family of surfaces of constant power

S = {Sc : c ≥ 0} is defined by Sc = {ϕ : ‖P⊥
Hϕ‖

2
= c2}.

The UBCP invariant test realizes the best possible con-
stant power βφ∗(ϕ,µ) = βφ∗(ϕ′,µ), ∀ϕ,ϕ′ ∈ Sc and
βφ∗(ϕ,µ) > βφ(ϕ,µ) over the tests with a given false
alarm rate φ ∈ Kα. Finally, the threshold λα is chosen to
satisfy the false alarm rate α, Prϕ=0,µ(Λ(Z) > λα) = α.
Hence, the test φ∗(·) decides between H0 and H1 with the
best detection probability for a bounded false alarm rate,
which represents the major advantage of our approach.

The test is designed as follows, where ‖ · ‖ represents the
Euclidean norm:

φ∗(Z) =

{
H0 if Λ(Z) = ‖P⊥

HZ‖
2
/γ2

t < λα

H1 else
(9)

As we will show in Section 5, this strong theoretical
support also has a major impact in practice, providing
results that largely outperform previous proposals. The
Optimal Spline-Based Detection method developed in this
section will be referred as the OSBD method in the rest of
the paper.
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4. Optimal Sequential Volume Anomaly Detection

and Isolation

In this section we introduce an optimal volume anomaly
detection algorithm that has also the ability of isolating
the anomaly, i.e. finding which is the particular OD flow
responsible for the abnormal links traffic variation. We
consider the same simplifying hypothesis as in [25], consid-
ering only “local” anomalies, namely anomalies in a single
OD flow at one time. Different from Section 3, we now
seek to detect and isolate an additional anomalous volume
θ in one single OD flow k. This traduces into an additive
change θ = θ rk in the SNMP measurements vector Yt.
Instead of maximizing the probability of anomaly de-

tection for a bounded false alarm probability, we design
an algorithm that minimizes the maximum mean detec-
tion/isolation delay for an upper bounded probability of
false isolation and a lower bounded mean time between
consecutive false alarms, a usual measure of the false alarm
rate. The mean detection/isolation delay is another cru-
cial design criterion; indeed, the faster the detection and
isolation, the faster the resolution of the problem.
The problem of detecting and isolating a volume

anomaly that occurs at an unknown time t0 is a particu-
lar case of a classical change detection/isolation problem,
where the objective is to compute an alarm time T at
which a change of type ν ∈ {1, 2, . . . ,m} in the probabil-
ity distribution of a random sequence of measurements is
detected. The alarm time T corresponds to the time when
an anomaly in OD flow ν is detected and isolated. Before
going into the details of the particular algorithm, let us
formally define the optimality minimax criterion that we
use in the design. The optimality criterion consists of min-
imizing the maximum mean delay for detection/isolation,
given by:

E(T ) = sup
t0≥1,1≤k≤m

E
k
t0
(T − t0|T ≥ t0), (10)

where Ek
t0
(T − t0|T ≥ t0) denotes the conditional expec-

tation of T − t0 when the event {T ≥ t0} is true and the
k-th change type occurs at time t0, subject to the following
constraints: (i) a lower bound for the mean time between
two false alarms:

E0(T ) ≥ υ (11)

where υ is a prescribed lower bound and E0(·) de-
notes the expectation when all the measurements have the
same probability density function f0, corresponding to the
anomaly-free traffic; (ii) an upper bound for the maximum
probability of false isolation:

max
1≤k≤m

max
1≤j 6=k≤m

sup
t0≥1

Prkt0(ν = j|T ≥ t0) ≤ η (12)

where Prkt0(ν = j|T ≥ t0) corresponds to the probabil-
ity that the decision is j whereas the true change type is

k 6= j. In brief, we require that the maximum mean de-
tection/isolation delay given by (10) should be as small

as possible subject to performance bounds on the mean
time between consecutive false alarms and the maximum
probability of false isolation.
In order to design an algorithm that verifies this mini-

max criterion, we shall treat the detection/isolation of a
volume anomaly that occurs at an unknown time t0 as a
sequential hypothesis testing problem, where the null hy-
pothesis H0 = {OD flows are anomaly-free} (t0 = +∞)
is tested against m alternatives Hk

t0
= {the k-th OD flow

presents an anomalous additional amount of traffic θ from
time t0}, k = 1, . . . ,m. Sequential approaches are used
to minimize the number of observations needed to decide
among the hypotheses. The sequential hypothesis testing
problem can be written as:

H0 : Zt ∼ N (H µt, γ
2
t Ir) , t = 1, 2, .. (13)

Hk
t0

:

{
Zt ∼ N (H µt, γ

2
t Ir), t = 1, .., t0 − 1, ..

Zt ∼ N (H µt + θΦ− 1

2 rk, γ
2
t Ir), t = t0, ..

where Zt is the standardized measurements vector. As
we did before, we can remove the nuisance parameter µ

from the detection problem. In order to only keep the
anomalies-sensitive part of Zt, we compute the residual
process Ut = WZt, using a linear transformation W into
a set of r − q linearly independent variables. The matrix
WT is the linear rejector that eliminates the anomaly-free
traffic by projection onto the left null space of H , built
from the first r − q eigenvectors of P⊥

H corresponding to
eigenvalue 1. The rejector verifies the following relations:
WH = 0, WTW = P⊥

H and WWT = Ir−q. Hypotheses
Hk

t0
can be thus simplified by filtering the anomaly-free

traffic:

Hk
t0

:

{
Ut ∼ N (0, γ2

t Ir−q) , t = 1, .., t0 − 1, ..
Ut ∼ N (θ vk, γ

2
t Ir−q) , t = t0, t0 + 1, ..

where vk = W Φ− 1

2 rk corresponds to the signature in
the residuals of a change in OD flow k.
The recursive algorithm proposed in [43, 44] perfectly

fits this detection/isolation problem, with one useful fea-
ture, that of minimizing the mean number of samples
needed to detect a change and decide among the differ-
ent change types with bounded false alarm and false iso-
lation rates. This algorithm is asymptotically optimal,
i.e. it asymptotically minimizes the maximum mean de-
lay for detection/isolation E(T ) when both the false alarm
and the false isolation rates go to 0 : max{υ−1, η} → 0.
The output of the recursive detection/isolation algorithm
is twofold: (i) the alarm or stopping time Tr, which corre-
sponds to the instant when an alarm is raised, and (ii) a
decision νr, which corresponds to the type of change that
the algorithm decides for among the m possible change
types:
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Tr = min
16k6m

{Tr(k)}, νr = arg min
16k6m

{Tr(k)}

Tr(k) = inf {t > 1 : st(k) > 0} , k = 1 . . .m

st(k) = min
06j 6=k6m

[gt(k, j)− hk,j ], k = 1 . . .m (14)

with gt(k, j) = gt(k, 0)−gt(j, 0). The recursive functions
gt(k, 0) are defined by

gt(k, 0) = (gt−1(k, 0) + ut(k, 0))+ (15)

ut(k, 0) = log
fk(Ut)

f0(Ut)
(16)

where g0(k, 0) = 0 for every 1 6 k 6 m and gt(0, 0) = 0
for all t, f0 is the probability density function of residuals
under anomaly-free behavior and fk is the probability den-
sity function of residuals Ut0 , Ut0+1, .. after the k-th type
of change. The thresholds hk,j are chosen by the following
formula:

hk,j =

{
hd if 1 6 k 6 m and j = 0
hi if 1 6 k, j 6 m and j 6= k

(17)

where hd and hi are the detection and isolation thresh-
olds. Basically, the anomaly detection is performed by
comparing the m recursive functions gt(k, 0) against the
detection threshold hd, while the anomaly isolation is per-
formed by comparing the difference between these m re-
cursive functions with the isolation threshold hi. The stop-
ping time Tr(k) is the first time when the alternative hy-
pothesis Hk

t0
is chosen by the sequential test as the most

likely hypothesis. The stopping time Tr corresponds to
the earliest of all the times Tr(k) with 1 6 k 6 m. The
detected anomaly is declared in OD flow k if the earliest
of all these times was Tr(k).
The choice of the detection and isolation thresholds hd

and hi is discussed in [43], with practical comments and
simulation results about the effectiveness of such thresh-
olds. In practice, the detection threshold hd is fixed so as
to achieve the desired false alarm rate. As it follows from
[43], some statistical issues of the recursive algorithm can
be solved by choosing hd ≥ hi, and thus we will generally
consider hi = hd. In other words, given the desired false
alarm rate, we fix hd and take the biggest value of hi to
minimize the false isolation rate.
A final remark about the computation of the probabil-

ity density functions in (16): f0 is nothing but a Gaussian
density function of lawN (0, γ2

t Ir−q). In the case of fk, the
amplitude of the anomaly θ is completely unknown, and
we must assume a certain distribution for it in order to cor-
rectly define fk. Given that we are dealing with volume
anomalies, it is reasonable to assume that the amplitude
θ is uniformly distributed between two defined bounds θ1
and θ2. In this case, it is easy to see that fk is simply
a Gaussian mixture density. The bounds are introduced

Network nodes/links ODFlows data sampling

Abilene 12 - 54 132 OD flows 5’
GEANT 23 - 74 506 OD flows 15’
Tier-2 ISP 50 - 168 2450 SNMP 10’

Table 1: Network Topologies and Datasets.

just for technical reasons and they can be chosen arbitrar-
ily when dealing with volume anomalies. However, it is
possible to control the sensitivity of the algorithm to de-
tect small traffic changes instead of volume anomalies, see
[44] for additional details. The choice of the bounds has
little impact as regards anomaly isolation, because the sig-
nature is based on the direction of the anomaly and not
on its amplitude.
The optimal sequential volume anomaly detection and

isolation algorithm presented in this section will be re-
ferred as the Sequential Spline-Based (SSB) method in the
rest of the paper.

5. Validation and Performance Evaluation

In this section we present the validation of the proposed
traffic model and the evaluation of the anomaly detec-
tion/isolation algorithms using real and artificial measure-
ments in different operational backbone networks. We first
describe the datasets used in the evaluation; secondly, we
validate the anomaly-free-traffic model and compare its
ability to infer the TM from SNMP measurements against
well-known methods in the field; then we compare the
performance of the OSBD method against the well-known
PCA approach [25]; finally, we evaluate the SSB method in
different network scenarios and compare its performance
against two celebrated algorithms, one based in a sequen-
tial implementation of the PCA approach and the other
based on Kalman filtering techniques [31]. In all cases we
show that the performance of our algorithms in practice is
in agreement with the thorough theoretical foundation.

5.1. The Datasets

Data used for validation and evaluation consists of real
traffic measurements from three operational networks: the
Abilene network, an Internet2 backbone network at the
US; the GEANT network, an European academic network;
and a commercial Tier-2 ISP network. Table 1 presents the
topology of each network. Abilene traffic data consists of 5’
sampled TMs collected via Netflow from the Abilene Ob-
servatory [45] and available at [46]. GEANT traffic data
consists of 15’ sampled TMs, built from IGP and BGP
routing information and Netflow data in [47], available at
the TOTEM website [48]. The Tier-2 ISP network is a
private commercial network and data is not public. Di-
rect OD flow measurements are not available for this net-
work. Instead, link traffic volumes are gathered every 10’
via SNMP. In order to validate our traffic model in this
network topology, we compare our estimate against the
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well-known tomogravity estimate [5]. The tomogravity es-
timation method is a widely accepted method to estimate
OD flow volumes from link traffic measurements, routing,
and topology information.
In the following evaluations, we assume that traffic flows

Xt are unknown and consider the SNMP measurements Yt

as the input known data. In order to verify the stability
properties of the proposed model and algorithms, two sets
of measurements are used for each network topology: the
“learning” dataset, used for calibration purposes, and the
“testing” dataset, used to evaluate the performance of the
algorithms. We shall use Tlearn and Ttest as the sets of time
indexes associated with measurements from the learning
and testing datasets respectively.

5.2. Traffic Model Validation and Performance Evaluation

The spatial SB model presented in this work is the first
parametric, linear, and parsimonious model for the TM
proposed in the literature. For this reason, we provide
substantial evidence of its relevance and applicability in
the three presented networks. Let us begin by showing
that the model is stable in time and that it permits to cor-
rectly infer OD flows volume from SNMP measurements,
using the Abilene and the GEANT datasets.
The learning dataset is composed of one hour of SNMP

measurements and it is used to construct the splines basis
S. Given that the sampling rate in GEANT is smaller than
the one used in Abilene, we interpolate intermediate mea-
surements in the learning dataset of the former topology.
The testing dataset is composed of 672 consecutive SNMP
measurements. The learning dataset is measured one hour
before the testing dataset. The SB model is computed for
each network using each learning dataset, following these
steps: (i) the tomogravity estimate (TGE) x̂ TGE

t (k) is
computed for all OD flows k and all t ∈ Tlearn; (ii) the
mean flow values x̄ TGE(k) = 1

#(Tlearn)

∑
t∈Tlearn

x̂ TGE
t (k)

are computed, where # (Tlearn) is the number of time in-
dexes in the learning dataset; (iii) finally, the obtained
mean values x̄ TGE(k) are sorted in ascending order to
obtain a rough estimate of the OD flows traffic volume. In
both cases the SB model is designed with cubic B-splines
(p = 3) and 2 knots, representing small, medium-size, and
large OD flows, see figure 2. The use of cubic splines comes
directly from the shape of the curve to approximate. We
use the Matlab Splines Toolbox to design q splines s(i),
1 ≤ i ≤ q. The choice of cubic splines and the num-
ber of knots results in a total of q = (p + 1) + 2 = 6
splines [34]. This clearly reflects the low-dimensionality
of our anomaly-free-traffic model, as q is effectively much
smaller than m for both network topologies. The mean
value x̄ TGE(k) of each OD flow is used to compute an es-
timate σ̂2

k of σ2
k, which leads to an estimate Φ̂ of Φ, quite

efficient and sufficient in practice.

The obtained calibrated model is used to infer the OD
flows volume from the SNMP measurements of the test-
ing dataset, using the SMLE estimate defined in (6). To
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Figure 3: (a) RRMSE(t) and (b) Cumulative RRMSE(t) for 672
measurements in Abilene and GEANT

qualify the accuracy of the SMLE estimate and to test the
performance of the short learning step, we compute the
relative root mean squared error (RRMSE) for every time
t in the testing dataset:

RRMSE(t) =

√
∑

m

k=1
(xt(k)− x̂SMLE

t (k))
2

√
∑

m

k=1
xt(k)

2

, ∀t ∈ Ttest (18)

where xt(k) is the true traffic volume of OD flow k at
time t and x̂SMLE

t (k) denotes the corresponding SMLE es-
timate. The RRMSE has been used in previous works [6, 7]
as a summary of the relative estimation error for all m OD
flows at every time t. Figure 3(a) presents the temporal
evolution of the RRMSE for the 672 measurements in the
testing datasets for Abilene and GEANT. In both cases,
the relative error remains stable in time. This result con-
firms the hypothesis about a certain time-invariance which
has been concluded from figure 2.
Figure 3(b) shows that more than 70% of the time esti-

mation relative errors are below 10%. A deeper study of
the RRMSE shows that in most cases, large RRMSE val-
ues correspond to large relative errors in the lowest-volume
OD flows, which are well-known to be hard to estimate
[5]. Note however that small OD flows have little impact
as regards our problem of volume anomaly detection and
are generally less important to estimate. The mean val-
ues of the RRMSE for the evaluation period are 8.14% for
Abilene and 7.04% for GEANT. Methods proposed in the
literature as “accurate” estimates present relative errors
that vary between 5% and 15% [6, 7], thus we conclude
that the obtained results are highly satisfactory.
In the validation of the model for the Tier-2 ISP

network, we compare the value of the SMLE estimate
x̂SMLE
t (k) against the tomogravity estimate x̂TGE

t (k), us-
ing the relative root mean squared difference (RRMSD)
between both estimates:

RRMSD(t) =

√
∑

k∈topTG-Th
(x̂TGE

t (k)− x̂SMLE
t (k))

2

√
∑

k∈topTG-Th
(x̂TGE

t (k))
2

, ∀t ∈ Ttest

(19)

Comparing all flows in (19) is not a reasonable approach.
The tomogravity estimate provides quite accurate results
for relatively high-volume flows, but poor for small flows
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Figure 5: QQ-plots for 2 residual processes from (a) Abilene and (b)
GEANT.

[5]; we define the topTG-Th flows as those estimated flows
by the tomogravity method that are stable in time and
which mean value exceeds a threshold Th. In this sense we
only keep the most accurately estimated flows, removing
the noisy or erratic estimates which seem to be wrongly
estimated.

Figure 4 depicts the temporal evolution of the RRMSD
between the TGE and SMLE estimates, for a Tier-2 ISP
network. In this evaluation, we tune Th such that 60% of
the total flows are compared in the RRMSD index, which
represents approximately 95% of the total traffic volume.
The relative difference between TGE and SMLE is stable
in time and has a mean value of 0.57%. This seems rea-
sonable since the splines decomposition conducted in the
training dataset is based on the TGE estimate. Based on
our previous observations about the tomogravity estimate,
we conclude that the SB model is also appropriate for this
Tier-2 ISP network.

As a final validation of the SB model, we verify the
Gaussian assumption for Abilene and GEANT, analyzing
the residual processes Ut. Quantile-Quantile plots for two
of these residual processes are plotted in figure 5, both for
Abilene and GEANT. These residual processes clearly fol-
low a Gaussian distribution. We also verify the Gaussian
assumption by applying a Kolmogorov-Smirnov goodness-
of-Fit hypothesis test to the residual processes. The accep-
tance rate of this test at the 5% level is 98.5% for Abilene
and 97.7% for GEANT, which also confirms the Gaussian
assumption.

An obvious question that arises when introducing a new
TM model is how accurate this model is as regards the
inference of a TM with respect to existing work in the lit-
erature. Figure 6 presents a comparative summary of the
performance of the SMLE estimate in Abilene, consider-
ing three well-known TM inference methods: a Recursive
Kalman Filter Estimate (RKFE), the Simple Gravity Es-
timate (SGE) [5], and the Tomo-Gravity Estimate (TGE)
[5]. The RKFE method [8] corresponds to an enhanced ex-
tension of the recursive TM estimation method presented
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Figure 6: (a) RRMSE(t) and (b) Cumulative RRMSE(t) for 672
measurements in Abilene, for the SMLE, the RKFE, the TGE, and
the SGE.

in [6]. This method uses a 24hs learning dataset composed
of direct OD flow measurements for calibration purposes.
The obtained mean values of the relative error are 8.14%,
4.48%, 11.15%, and 39.08% for the SMLE, RKFE, TGE,
and SGE respectively. From figure 6(b) we can see that the
SMLE and the RKFE produce estimation relative errors
below 10% for approximately 75% and 92% of the TMs
respectively, while this result drops to nearly 40% for the
TGE, and to 0% for the SGE. The better performance
achieved by the RKFE method has a clear explanation:
the Kalman filter uses all previous SNMP measurements
until time t to perform an estimated TM at time t, while
the rest of the methods only use Yt to produce an esti-
mate X̂t. The performance gain of the SMLE method
w.r.t. the TGE method may not be that important, but
the SB model has a clear advantage: its parametric, linear,
and parsimonious structure allows to define optimal algo-
rithms. For example, the SMLE is asymptotically optimal,
i.e. it is asymptotically unbiased and efficient, which is not
the case for the TGE. Presented results evidence the accu-
racy of the proposed spatial model w.r.t. previous highly
respected work.

5.3. Numerical Evaluation of the Optimal Detection Algo-

rithm

The performance of the OSBD method presented in
Section 3 is compared against the performance obtained
with the well-known PCA approach introduced in [25].
This method is chosen as benchmark given its relevance
in the anomaly detection literature [23, 24, 25, 27, 29].
The PCA approach consists of a decomposition of the
SNMP measurements into a principal components basis,
separating traffic into a normal subspace that captures
the anomaly-free traffic behavior, and an anomalous sub-

space that provides residuals sensitive to anomalies. This
approach as presented in [25] is not designed to work
on-line; instead, the analysis is performed off-line over a
time window of n consecutive SNMP measurements vec-
torsY1..n = {Yt1 , Yt2 , .., Ytn}

T (n = 1008 consecutive mea-
surements in [25], which corresponds to one week of traf-
fic). Each column in Y represents a time series of n sam-
ples of SNMP measurements for each network link. The
normal subspace S corresponds to the space spanned by
the first k principal components of Y1..n, namely ui=1..k,
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while the remaining r − k components are used to build
the anomalous subspace Ŝ. Given S and Ŝ, every SNMP
measurements vector Y ∈ Y1..n can be separated into the
modeled traffic Ymodel and the residual traffic Yresidual by
simple projection onto S and Ŝ respectively:

Y =

Ymodel

︷ ︸︸ ︷

PP
T
Y +

Yresidual

︷ ︸︸ ︷
(

I−PP
T

)

Y (20)

where P ∈ R
r×k stands for the matrix with the first k

principal components ui=1..k as column vectors and PPT

represents the projection matrix onto the normal subspace.
The anomaly detection is finally performed in the residual
traffic, looking for large changes in the squared norm of
residuals, ||Yresidual||

2
.

Let us evaluate and compare the performance of the
OSBD method and the PCA approach. We shall use two
testing datasets, composed of 720 consecutive SNMP mea-
surements from the Abilene and the GEANT networks.
The learning datasets for the OSBD method consist of one
hour of anomaly-free SNMP measurements, gathered one
hour before the testing datasets. In the case of the PCA
approach, the method is directly applied to each complete
testing dataset Y1..720 = {Yt1 , Yt2 , .., Yt720}

T . For the sake
of false alarm and correct detection rates evaluation, the
set of “true” anomalies is manually identified in each test-
ing dataset. Manual inspection declares an anomaly in an
OD flow if the unusual deviation intensity of the guilty OD
flow leads to an increase of traffic (i) larger than 1.5% of
the total amount of traffic on the network and (ii) larger
than 1% of the amount of traffic carried by the links rout-
ing this guilty OD flow, for each of these links. This rule is
based on the conclusions about large traffic changes drawn
in [33]. Hence, only large volume anomalies are considered
as “true anomalies”. 40 measurements of the Abilene test-
ing dataset are affected by at least one significant volume
anomaly. In the case of the GEANT testing dataset, 36
anomalous measurements are identified. Different from the
PCA approach, the OSBD method is applied to the SNMP
measurements of each testing dataset in an on-line fash-
ion, sequentially running the test defined in (9) for every
new “incoming” SNMP measurement Yt1 , Yt2 , .., Yt720 . For
the detection purpose, it is crucially important to have a
good estimate of γt. This parameter is easily estimated
from the learning dataset by using the maximum likeli-
hood estimate of noise variance in residuals Ut [35]. Since
this parameter can slowly vary in time, its value is up-
dated during the test: at time t, if no anomaly has been
declared in the last hour, γt is estimated by its value one
hour before.
Figure 7 depicts the ROC curves for the OSBD and the

PCA methods in the Abilene and the GEANT datasets,
showing the correct detection rate β for different values of
the false alarm rate α, corresponding to different values of
the detection threshold. In the PCA approach, a different
number of k first principal components uk is used to model
the normal subspace. Results obtained with the PCA ap-
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Figure 7: Correct detection rate vs false alarm rate for the OSBD
method (solid line) and the PCA approach, considering a different
number of k first principal components uk to model the normal sub-
space.

proach in the Abilene dataset are quite far from those ob-
tained with the OSBD method; the PCA test presents
more than 2 times lower detection rates for a reasonable
false alarm rate, below 5%. For example, for a false alarm
rate α = 1%, the OSBD method correctly detects almost
80% of the anomalies, while this value drops to nearly
40% for the best performance of the PCA approach (using
1 principal component u1 to model the normal subspace).
Results are quite similar for the GEANT dataset, but in
this case the best performance of the PCA approach is
attained using 3 principal components ui=1..3 to model
the normal subspace. Figure 7 also evidences the lack of
consistency of the PCA approach as regards the number of
principal components used to model the anomaly-free traf-
fic; for the same dataset, results are quite different when
this number slightly varies. For the different datasets, the
number of principal components that provides better re-
sults also differs, which makes it difficult to generalize re-
sults. As it is shown in recent works [29], the PCA ap-
proach has to be highly tuned for each particular dataset
in order to provide reliable results, making it inapplica-
ble in a general real scenario. In fact, the main problem
with current in-house methods is the difficulty to general-
ize their results.
The last important observation is that the OSBD

method provides highly accurate results with a remarkably
short learning-step, reinforcing the stability properties of
the underlying parametric anomaly-free-traffic model and
the robustness of the approach. On the contrary, the
PCA approach provides a completely data-driven model
for anomaly-free traffic, resulting in the aforementioned
shortcomings.

5.4. Performance Evaluation of the Sequential Anomaly

Detection and Isolation Algorithm

Le us first demonstrate the ability of the SSB algorithm
to detect and isolate an OD flow volume anomaly from
SNMP measurements in two different networks, the com-
mercial Tier-2 network and the Abilene network. Figure 8
shows a typical realization of functions st(i) and gt(i, 0) de-
fined in (14) and (15) respectively. Functions st(i) are used
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Figure 8: Typical realizations of anomaly detection/isolation func-
tions for a Tier-2 network (a,b) and Abilene (c,d).

to “monitor” the OD flows; when st(i) exceeds the thresh-
old 0, OD flow i is declared anomalous. The anomaly in
the Tier-2 network begins at time 3660 min, and at time
1070 min in Abilene. Note that after this time, several
recursive functions gt(i, 0) rapidly grow in both network
scenarios. Each function gt(i, 0) is associated with OD
flow i and when this function increases, it means that OD
flow i is suspected of carrying an abnormal amount of traf-
fic. Contrary to gt(i, 0), only function st(159) associated
to anomalous OD flow 159 increases and finally exceeds the
threshold 0 in the Tier-2 network. In the case of Abilene,
the anomaly is correctly isolated in OD flow 87. Hence,
functions st(i) permit to isolate the anomalous OD flow
among all the OD flows associated to functions gt(i, 0) that
have rapidly increased. The volume anomalies detected in
the examples of figure 8 correspond to abrupt and massive
volume augmentations, and thus functions st(i) only need
one observation to detect and isolate the anomalous OD
flow. Since the underlying sampling rates of both datasets
are 10’ and 5’ for the Tier-2 and the Abilene networks re-
spectively, the detection delay corresponds to 10’ and 5’,
respectively. Note however that our algorithm in not in-
trinsically tied to any particular sampling rate, thus this
detection delay would be even shorter if the sampling rates
were higher. An interesting observation of this evaluation
is that the SSB algorithm achieves accurate results in both
datasets, even though the respective anomaly-free traffic
behaviors are quite different between these two networks.

Let us now compare the performance of the SSB algo-
rithm to continuously detect and isolate volume anoma-
lies in real-time against two sequential methods in the
literature: the Kalman-Based method (KB) presented in
[31], and a sequential implementation of the previously
described PCA method that we will reference as the Se-
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Figure 9: On-line volume anomaly detection and isolation in Abilene,
using the SSB method. The time between consecutive measuremmets
is 5 minutes.

quential PCA method (SPCA). This sequential extension
of the PCA approach comes from the authors of the for-
mer PCA method in [23, 25], but the method was never
evaluated in their anomaly detection work [25]. The idea
is straightforward; the principal components and the cor-
responding projection matrix PPT are built off-line from a
certain time window [t1, tn] of SNMP measurementsY1..n;
subsequently, every new arriving measurement Yt at time
t > tn is processed on-line using this projection matrix.

The PCA and the subspace methods can also be used to
detect single OD flow volume anomalies. In the subspace
framework, a particular volume anomaly represents a dis-
placement of the SNMP measurements vector Y from the
normal subspace S into a particular direction. The authors
of [25] propose to find the single largest OD flow volume
anomaly that best describes this deviation by simply us-
ing a greedy search algorithm. We apply this approach to
isolate volume anomalies with the SPCA method as well.
The KB method is only used for volume anomaly detec-
tion as presented in [31], thus we do not intend to use it for
anomaly isolation. Similar to Section 5.2, we use the en-
hanced extension of the recursive traffic model presented
in [8] for the KB method. In order to use the SSB method
to continuously detect and isolate volume anomalies, the
algorithm statistics are reset to 0 after each anomaly de-
tection, i.e., gt(i, 0) is set to 0 after a change detection at
time t, ∀i = 1..m. Figure 9 shows how the SSB method
works on-line, continuously detecting and isolating volume
anomalies in Abilene.

The testing dataset used for the evaluation consists of
864 consecutive SNMP measurements from the Abilene
network. Instead of manually identifying the set of true
volume anomalies, we introduce synthetic volume anoma-
lies into this set. Indeed, in order to test the volume
anomaly isolation algorithms, we need to know exactly
which is the anomalous OD flow. Additionally, we need
to be sure that a volume anomaly only occurs at a partic-
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Method Detected False Alarms Isolated

SSB 93.9 % 1.4 % 90.8 %
KB 90.8 % 1.3 % n/a
SPCA (u1) 76.9 % 1.9 % 73.9 %
SPCA (ui=1..3) 53.9 % 1.7 % 49.2 %

Table 2: Results of the detection and isolation for 864 SNMP mea-
surements in Abilene, composed of 65 OD flow volume anomalies.

ular OD flow at one time, so as to fulfill the simplifying
hypothesis of single OD flow anomalies considered in Sec-
tion 4. We follow a similar procedure as that described in
[31] to introduce 63 large synthetic volume anomalies. The
basic idea of this procedure consists in extracting the long-
term trend from each OD flow, adding a Gaussian noise
to these “smoothed” OD flows and finally adding the syn-
thetic volume anomalies to this “anomaly-free” smoothed
dataset. These anomalies correspond to short-lived volume
changes in particular single OD flows. We additionally add
two short-lived volume anomalies that span multiple OD
flows at the same time, in order to analyze the response of
the single OD flow volume anomaly isolation algorithms
in that case.

Table 2 presents the comparative performance of the
three algorithms. As before, the training dataset for the
SSB method consists of 1 hour of anomaly-free SNMP
measurements. As in [23], the training dataset for the
SPCA method consists of 1 week of SNMP measurements,
gathered immediately before the testing dataset and not
necessarily free of volume anomalies. The PCA decom-
position as proposed in [23, 25] is directly applied to un-
filtered data, thus we follow this approach. Similarly to
[31], the learning dataset for the KB method consists of
24 hours of anomaly-free direct OD flow measurements.
The detection thresholds for the three methods are set so
as to achieve a false alarm rate of about 1% in the testing
dataset. As we have previously stated in Section 4 and
considering the observations in [43], the isolation thresh-
old of the SSB method is set to the same value as the
detection threshold, i.e., hi = hd in equation (17). In or-
der to appreciate the sensitivity of the SPCA method to
the dimensionality of the normal subspace, we consider
two different representations for S, using 1 and 3 principal
component(s) respectively.

The SSB method correctly detects 61 out of the 65 vol-
ume anomalies, producing a total of 12 false alarms on
the 864 measurements of the testing dataset. From the 61
detected anomalies, 59 are correctly identified in the par-
ticular anomalous OD flows. The two volume anomalies
that are not correctly isolated correspond to those anoma-
lies that span multiple OD flows simultaneously. In this
case the algorithm certainly produces an alarm, but the
isolation step can not correctly distinguish between the
anomalous OD flows. In the following section we discuss
an approach to solve this problem.

Detection results are similar for the KB method, which

correctly detects 59 anomalies with only 11 false alarms.
Obtained results are less accurate with the SPCA ap-
proach and many anomalies go undetected. Using 1 prin-
cipal component to construct the normal subspace, the
SPCAmethod correctly detects 50 volume anomalies while
triggering 16 false alarms. The detection threshold of the
SPCA approach can be tuned so as to correctly detect
89% of the anomalies, but the false alarm rate climbs to
approximately 6% in that case, a value almost 5 times big-
ger than the rest of the methods. The SPCA method has
a similar problem to isolate multiple OD flows anomalies,
in this case because the greedy search we used only looks
for single OD flow anomalies. However, studies in [29]
show that correctly identifying the anomalous OD flows
with the PCA approach is inherently difficult. Results are
quite poor when using 3 principal components to model
S, only detecting 35 volume anomalies and isolating 32.
These results are consistent with the sensitivity analysis
and the highlighted shortcomings of the PCA approach
presented in [29, 28].

6. Discussion

In this section we shall focus on complexity and imple-
mentation issues of the presented methods, discussing ad-
vantages and disadvantages of our proposals with respect
to previous works, as well as some possible extensions for
the anomaly isolation algorithm.

6.1. Complexity Analysis

Numerical complexity and memory storage are central
issues for on-line anomaly detection. Most of previous
works on network-wide anomaly detection have conceived
methods for off-line detection [25, 33], mining anomalies
in large snapshots of data rather than treating every sin-
gle measurement sequentially. These methods can be used
for diagnosis of volume anomalies after their occurrence,
but are rather useless for an ISP if anomaly mitigation
or any other kind of countermeasure is the objective. On
the contrary, our both SB methods can be used for on-line
anomaly detection, and thus we should assess their com-
plexity. Let us compare the numerical complexity of these
algorithms against those used for comparison in Section
5.4, the KB method and the SPCA approach.

The OSBD method stores two matrices in memory, the
matrix Φ− 1

2 , with Φ = RΣRT , and the projection matrix

P⊥
H = Ir−H(HTH)

−1
HT , with H = Φ− 1

2RS. This repre-
sents a total of 3r2/2 variables (P⊥

H is symmetric), where
r is the number of links in the network. The computa-
tion of Φ− 1

2 and P⊥
H involves matrix multiplications and

inversions, and thus the associated cost is O(r3). There
is an additional cost in the learning phase of the spline-
based methods, related to the tomogravity estimate used
to design the splines basis S. The cost of the tomograv-
ity method is similar to that of the least-squares method,
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which implies O(m3) operations to estimate an m× 1 vec-
tor. All these matrices are computed off-line during the
learning phase and do not affect the scalability and on-
line applicability of the method. The on-line application
involves three consecutive operations at every time t: the
whitening of the SNMP measurements vector Zt = Φ− 1

2Yt,
the projection of the obtained vector onto the left null
space of H , and the computation of the norm of this pro-
jection. All these operations have a complexity O(r2).
Memory usage is similar in the case of the SSB method.

The matrix Φ− 1

2 is also stored, but instead of saving the
projection matrix P⊥

H the rejector W is kept in memory,
built from the first r − q eigenvectors of P⊥

H . Given the
recursive structure of the SSB method, m additional vari-
ables are kept in memory, which corresponds to the m
recursive functions gt(i, 0), i = 1, . . . ,m. For anomaly iso-
lation purposes, the m anomaly signatures vk ∈ R

(r−q)×1

are also stored. The singular value decomposition (SVD)
of P⊥

H has a computation complexity of O(r3), and as be-
fore, the construction of the splines basis involves O(m3)
operations. In the on-line detection/isolation phase, resid-
uals Ut = WZt are firstly computed and then used to
update the m recursive functions gt(i, 0) according to (15)
and (16). Finally, the m functions st(i) used for anomaly
isolation are computed according to (14). These steps in-
volve approximately O(r2) operations for anomaly detec-
tion and O(m2) additional operations for anomaly isola-
tion.
The SPCA method keeps the symmetric projection ma-

trix C = (Ir −PPT ) in memory, which accounts for r2/2
variables. The anomaly isolation in the SPCA method
consists of a greedy search for a particular anomaly signa-
ture, each represented by a normalized column of the rout-
ing matrix rk ∈ R

r×1 that must also be saved in memory.
The construction of PPT relies on computing the SVD of
the SNMP measurements matrixY ∈ R

n×r, where n is the
number of consecutive SNMP measurements considered, a
number usually much bigger than r; for example, n = 1008
and r = 49 in [25]. This SVD has a numerical complexity
of O(nr2). The use of the SPCA for anomaly detection
involves the projection of the SNMP measurements vector
onto the anomaly subspace and the computation of the
norm of this projection, with a numerical complexity of
O(r2). As regards anomaly isolation, the greedy search
consists of constructing m possible anomaly explanations
(with a cost of O(r2) operations each), thus additionally
adding O(mr2) operations.
Finally, the KB method complexity corresponds to that

of the standard Kalman filter recursive equations. We re-
fer the reader to the original paper of the KB method [31]
for additional details. The method must store in memory
an m × m state transition diagonal matrix that models
the evolution of the anomaly-free traffic matrix, the rout-
ing matrix R, and the noise covariance matrices associated
with the observation and the evolution processes; the lat-
ter is also a diagonal matrix. This accounts for a total
of 2(r2 +m) variables in memory. The recursive nature of

Method no vars. mem. no ops. learn no ops. on-line

OSBD O(r2) O(m3) O(r2) n/a
SSB O(mr) O(m3) O(r2) O(m2)
SPCA O(mr) O(nr2) O(r2) O(mr2)
KB O(m2) O(m3) O(m3) n/a

Table 3: Numerical complexity and memory usage for different on-
line anomaly detection algorithms. On-line operations are divided
into detection operations and isolation operations.

the Kalman filter implies to keep in memory two additional
matrices, the m × r Kalman gain matrix and the m ×m
prediction error covariance matrix. The learning process
of the KB method consists of a recursive Expectation Max-
imization (EM) approach. There are many different EM
algorithms, but in all cases the resolution involves matrix
operations with a numerical complexity of O(m3) for the
estimation of an m × 1 vector. The use of the KB for
on-line anomaly detection implies to update the Kalman
gain, the estimation covariance error and the residual er-
ror. This involves matrix multiplications and inversions,
and thus the associated cost is O(m3).
Table 3 builds a raw summary of the numerical com-

plexity and memory storage restrictions for the algorithms
discussed above. Memory usage is similar in all cases, with
a slightly higher requirement for the KB approach. While
the SPCA method works with an n×r matrix in the learn-
ing phase, the SB and the KB methods use m × m ma-
trices and thus they require more operations for learning
issues. As regards on-line applicability, we see that the
KB method is largely more expensive than the rest of the
algorithms for anomaly detection, which comes directly
from using the Kalman filter with large matrices. Finally,
anomaly isolation involves a similar number of operations
for the SSB and the SPCA methods. The important con-
clusion that can be drawn from table 3 is that the SB
algorithms that we propose in this work have both similar
or even smaller numerical complexity for on-line anomaly
detection/isolation than those proposed to date.

6.2. Implementation Issues

We shall now discuss some important issues related to a
real implementation of the proposed algorithms in a large-
scale operational network. Table 4 presents a comparative
analysis of some implementation-significant features be-
tween the SB algorithms, the KB method, and the SPCA
method. Let us discuss each of the compared items.
All the methods use SNMP measurements as input data

for anomaly detection, making it possible, at least a pri-
ori, to detect volume anomalies in OD flows without ne-
cessity of direct flow monitoring technology. This is a key
feature regarding the development of light monitoring sys-
tems. However, the KB method needs anomaly-free (A-F)
direct flow measurements for calibration purposes, loosing
this advantage. The learning data for the SB methods
consists of anomaly-free SNMP measurements, while the
SPCA method uses SNMP measurements not necessarily
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free of anomalies for calibration (collected “raw” data).
There is a major difference in the duration of the learning
step, which we will see has important consequences. As we
have shown in the evaluation section, the SB methods just
need one hour of SNMP measurements to achieve reliable
results. The KB method uses 24 hours of OD flow mea-
surements to calibrate the underlying anomaly-free-traffic
model, and the SPCA method uses as much as 1 week of
SNMP measurements to build the normal and anomalous
subspaces. The use of raw SNMP measurements in the
SPCA approach is certainly useful, but as it has already
been shown in previous works [29, 28], there is an unde-
niable associated risk of learning contamination, which is
definitely magnified by the lengthly learning step. The
remarkably short learning step of the SB methods makes
it easy for network operators to calibrate the underlying
spline-based model without risks of contamination, as it is
quite easy to collect 1 hour of SNMP measurements free
of volume anomalies.
The assumptions involved in deriving the SB anomaly-

free-traffic model are quite strong with respect to the rest
of the algorithms. Nevertheless, the validation of the SB
model in three different large-scale networks shows that
these assumptions are correctly verified in quite different
network topologies and traffic scenarios (commercial traf-
fic as well as research-oriented traffic). The KB method
makes little assumptions on the underlying traffic model
and assumes the classical Kalman filter hypotheses to be
correctly verified. In practice, the Kalman filter is well-
known for being robust to model imprecisions, and thus
we claim that the KB assumptions are weak. The SPCA
method is a pure data-driven method and makes no as-
sumptions about traffic characteristics. However and as it
is pointed out in [29], there are quite significant assump-
tions in the heuristics used for anomaly isolation that have
no a-priori justification and can unduly trigger alarms in
some OD flows much more frequently than others.
The numerical complexity analysis previously performed

shows that both SB methods as well as the SPCA method
are easily scalable with the size of the network, while poor
scalability can be expected from the KB method.
There is no discussion about the impacts of routing mod-

ifications over the SPCA method in the former papers
[23, 25] and a constant routing matrix is used, both in
the theoretical development and in the evaluation. The
authors of [31] claim that the KB method can be easily
extended to work with time-varying routing matrices, but
no discussion is provided on the involved challenges and
current proposal does not support dynamic routing. The
main challenge with routing modifications is that intrado-
main routing modifications can modify the incoming OD
traffic flows distribution due to interdomain traffic shifts.
In fact, it is well known that hot potato routing can induce
interdomain routing changes due to intradomain routing
modifications. In this sense, all algorithms must be re-
calibrated when an intradomain routing modification oc-
curs, and the only methods that have a learning period

length in the time scale of a routing modification are the
SB methods, thus we claim that the SB anomaly detection
methods can partially support routing modifications.
A similar analysis can be done regarding the applica-

tion of the methods to non-stationary OD flows. Non-
stationarities in traffic flows may render the underlying
anomaly-free-traffic model non-longer adecuate, motivat-
ing a model recalibration. The key issue is how to detect
when a new recalibration must be done. In [7], authors
propose a very simple heuristic to achieve this task for the
underlying models of the SPCA and KB methods. The
idea is to monitor the innovation process it of the traf-
fic model, namely the difference between the measured
SNMP link counts Yt and the link counts obtained from
the estimated TM, namely Ŷt = RX̂t. The decision rule
is straightforward: if the innovation process is above cer-
tain threshold, a recalibration is triggered. To avoid un-
necessary and expensive recalibrations due to short-lived
volume anomalies, authors propose to monitor it during
periods of 24 hours, and only perform a new calibration if
it has exceeded the threshold more than some fraction of
the time. A similar heuristic could be directly applied to
the SB methods. However, there are some clear drawbacks
of this approach. The first problem is related to long-lived
anomalies, which may not be filtered even with a 24hs
window of measurements. In fact, in this case it is not
possible to distinguish between an anomaly and a model
that has drifted. The second problem is that the recali-
bration could come many hours late, seriously affecting the
performance of the detection algorithm. Our SB methods
have once again the lead in this subject, due to the short
and “cheap” (SNMP-based) learning period of the under-
lying model. A very simple heuristic to avoid drifting from
an accurate model would be to proceed in a similar way
to Section 5.3: simply recalibrate the model if no anomaly
has been declared in the last hour. Evaluations about the
temporal stability of the SB model showed that this is
not necessary even for several consecutive days in the real
datasets that we used. Even so, we have shown that if
necessary, our method can effectively be recalibrated ev-
ery hour, and thus we claim that the SB anomaly detection
methods support non-stationary traffic.
The last item we discuss concerns missing data; all al-

gorithms use SNMP measurements as input, which has
known practical limitations due to missing data and syn-
chronization problems when collecting SNMP readings
network-wide. In fact, the simultaneous collection of
SNMP readings is practically impossible in very large-scale
networks. The SPCA and the SB methods assume tem-
poral independence between consecutive SNMP measure-
ments, and thus the only impact that missing data has is
a delayed verdict. In practice, it is easy to verify that all
SNMP router readings are available at time t before apply-
ing the detection/isolation tests; in case there are missing
readings at time t, the methods have to delay the analysis
until the following time step where data is complete. As
regards desynchronized readings, the problem is similar to
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Feature Under Comparison SB KB SPCA

Input Data SNMP SNMP SNMP
Learning Data SNMP A-F TM A-F SNMP
Learning Period Length 1 hs. 24 hs. 1 week
Assumptions strong weak significant
Scalability yes poor yes
Dynamic Routing partially no no
Non-Stationary Traffic yes partially partially
Missing Data yes no yes

Table 4: Implementation issues in on-line anomaly detec-
tion/isolation.

missing data, and the best the algorithms can do is to de-
layed the analysis as before. Both problems condition the
smallest feasible time scale on which the proposed meth-
ods might be used, but this is an implementation issue that
depends on the particular network and thus it is impossi-
ble to give an order of this smallest time-scale. A possible
solution to alleviate the problem of missing and desynchro-
nized SNMP readings is to use oversampling: oversampling
is commonly used in signal processing to reduce the effect
of noisy measurements. However, this analysis is beyond
the scope of current paper. As regards the KB method, it
strongly relies on the temporal dependence between con-
secutive SNMP measurements, and thus it can be heav-
ily influenced by missing data. The Kalman filter can be
modified so as to cope with missing data, but current KB
implementation [31] does not support this practical limi-
tation.

6.3. Multiple Anomaly Isolation

To conclude with the discussion section, we propose
some possible extensions to the presented anomaly isola-
tion algorithm. In this paper we have assumed the same
simplifying hypothesis as in [25], considering only “local-
ized” anomalies, namely anomalies in a single OD flow
at a time. However, the isolation algorithm can be ex-
tended, at least in theory, to identify multiple consecutive
OD flow volume anomalies. The multiple hypotheses Hk

t0

in (13) can be rewritten so as to consider multiple combi-
nations of consecutive anomalous OD flows as additional
hypotheses to test. For example, suppose that we want to
detect single OD flow volume anomalies as well as volume
anomalies that span two OD flows at the same time. In
this case, we have to add to Hk

t0
all the hypotheses that

consider a volume anomaly at OD flow i and at OD flow
j at the same time, for 0 6 i 6= j 6 m. This accounts
for Cm

2 = m!/2!(m− 2)! ≈ m2/2 additional hypotheses to
test. In this case, the set of anomaly signatures is com-
posed not only by the m single normalized columns of the
routing matrix rk, k = 1..m but also by Cm

2 matrices that
include the two normalized columns of the routing matrix
associated with the two anomalous OD flows. This proce-
dure is the same as the one discussed in [25], but the idea
comes from the former work of the PCA approach for fault
diagnosis [21]. The problem with this approach is that
the number of hypotheses to deal with, and consequently
the number of decision functions st(i) to compute grows

highly and becomes very difficult to manage in a practi-
cal implementation. It is important to stress that the PCA
approach [21, 25] suffers from exactly the same problem as
regards anomaly isolation, as the heuristics employed have
a numerical complexity in the same order as our methods.
The isolation of multiple consecutive anomalous OD flows
is out of the scope of this paper.

7. Conclusions

In this paper we have addressed the problem of
network-wide volume anomaly detection and isolation
in large-scale IP networks. The following list highlights
the main characteristics of the proposed solution and our
major contributions to the field:

(1) Presented methods rely on coarse-grained, easily avail-
able SNMP data to detect and isolate volume anomalies
in traffic OD flows. This is a main advantage in order to
develop light monitoring systems without the necessity of
direct flow measurement technology, particularly in the
advent of the forecast massive traffic to analyze in the
near future.

(2) We have introduced an original linear, parsimonious,
spline-based traffic model to describe the anomaly-free
behavior of the traffic in a large-scale IP network. This
spatial traffic model has several applications and ad-
vantages with respect to previous traffic matrix models:
(i) being parsimonious by conception, it allows to solve
the fundamentally ill-posed nature of the traffic matrix
estimation problem from link SNMP measurements; (ii)
it is non-data-driven and as we have verified through
extensive evaluation with real data, it remains stable in
time, at least for several days; (iii) the model is easy to
calibrate and needs a very small amount of anomaly-free
data to provide reliable results; and most importantly,
(iv) this parsimonious parametric model makes it possible
to remove the anomaly-free traffic from the anomaly
detection problem, motivating our original approach of
treating the detection and isolation of volume anomalies
as a statistical change detection/isolation problem with a
nuisance parameter. This a-priori simple characteristic al-
lows to construct optimal algorithms for volume anomaly
detection and isolation.

(3) We have developed different methods for volume
anomaly detection and isolation with a paramount
advantage with respect to previous works in the field,
that of having solid optimality properties in terms
of detection mean delay, false alarm rate and false
isolation rate. This represents a major breakthrough
in the field and the most important contribution of
the paper. We argue that optimality support is fun-
damental in the conception of general algorithms,
not tied to any particular network or evaluation.
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(4) Using extensive data from three real backbone
networks we have shown that the theoretical optimal-
ity properties of the proposed algorithms are verified
in practice, providing results that outperform current
network-wide anomaly detection/isolation methods in a
wide variety of network topologies and traffic scenarios.

(5) The complexity analysis has shown that our algo-
rithms are more efficient than current methods to perform
anomaly detection and isolation in real time with even
better results. We believe that a real implementation of
our optimal algorithms could be envisaged without any
modifications to current technology.

It is worth noting that the presented approaches can
be easily extended to the detection and isolation of more
general traffic anomalies, provided that a statistical para-
metric model is available. We expect that the proposed
solutions in this work will stimulate in the future the de-
velopment of anomaly detection algorithms with a solid
theoretical background, allowing a robust growth of the
network monitoring field. We believe that the results of
decision theory applied to the field of network monitoring
are still not sufficient and worthy to extend. This paper
contributes to bridging the gap between these two fields.
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