english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/37395 How to cite
Title: Two-sided optimal stopping for Lévy processes
Authors: Mordecki, Ernesto
Oliú Eguren, Facundo
Type: Artículo
Keywords: Optimal stopping, Lévy processes, Two sided problems
Issue Date: 2021
Abstract: Infinite horizon optimal stopping problems for a Lévy processes with a two-sided reward function are considered. A two-sided verification theorem is presented in terms of the overall supremum and the overall infimum of the process. A result to compute the angle of the value function at the optimal thresholds of the stopping region is given. To illustrate the results, the optimal stopping problem of a compound Poisson process with two-sided exponential jumps and a two-sided payoff function is solved. In this example, the smooth-pasting condition does not hold.
Publisher: Institute of Mathematical Statistics and Bernoulli Society
IN: Electronic Communications in Probability, 2021, 26: article no. 9.
DOI: 10.1214/21-ecp376
ISSN: 10083-589X
Citation: Mordecki Pupko, E y Oliú Eguren, F. "Two-sided optimal stopping for Lévy processes". Electronic Communications in Probability. [en línea] 2021, 26: article no. 9. 12 h. DOI: 10.1214/21-ecp376.
License: Licencia Creative Commons Atribución (CC - By 4.0)
Appears in Collections:Publicaciones académicas y científicas - Facultad de Ciencias

Files in This Item:
File Description SizeFormat  
10121421ecp376.pdf219,28 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons