Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/37376
Cómo citar
Título: | Universally consistent estimation of the reach |
Autor: | Cholaquidis, Alejandro Fraiman, Ricardo Moreno, Leonardo |
Tipo: | Preprint |
Palabras clave: | Mathematics - Statistics theory |
Fecha de publicación: | 2022 |
Resumen: | The reach of a set M⊂Rd, also known as condition number when M is a manifold, was introduced by Federer in 1959. The reach is a central concept in geometric measure theory, set estimation, manifold learning, among others areas. We introduce a universally consistent estimate of the reach, just assuming that the reach is positive. Under an additional assumption we provide rates of convergence. We also show that it is not possible to determine, based on a finite sample, if the reach of the support of a density is zero or not. We provide a small simulation study and a bias correction method for the case when M is a manifold. |
Descripción: | Publicado también en: Journal of Statistical Planning and Inference, 2023, 225: 110-120. DOI: 10.1016/j.jspi.2022.11.007 |
EN: | Mathematics (Statistics Theory), arXiv:2110.12208, Nov 2022. |
Financiadores: | ANII: FCE_1_2019_1_156054 |
Citación: | Cholaquidis, A, Fraiman, R y Moreno, L. "Universally consistent estimation of the reach". [Preprint]. Publicado en: Mathematics (Statistics Theory). 2022, arXiv:2110.12208, Nov 2022. 15 h. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2110.12208.pdf | Preprint | 556,03 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons