english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/37364 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFrommel Araújo, Fabián-
dc.contributor.authorCapdehourat, Germán-
dc.contributor.authorLarroca, Federico-
dc.date.accessioned2023-06-01T19:14:51Z-
dc.date.available2023-06-01T19:14:51Z-
dc.date.issued2023-
dc.identifier.citationFrommel Araújo, F., Capdehourat, G. y Larroca, F. Reinforcement learning based coexistence in mixed 802.11ax and legacy WLANs [en línea]. EN: 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 26-29 mar 2023, pp. 1-6. DOI: 10.1109/WCNC55385.2023.10119114es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/37364-
dc.descriptionTrabajo enviado a : 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 26-29 mar 2023, pp. 1-6es
dc.description.abstractThe new 802.11 amendment, 802.11ax, represents a significant shift in the WLAN operation, specially in the MAC layer where the access mechanism is now OFDMA. In particular, the Access Point (AP) is now responsible for scheduling the terminals’ transmissions, which avoids collisions and results in an efficient usage of the spectrum. However, a full transition to this new technology is not foreseeable for several years, and until then mixed scenarios that also include legacy stations will be predominant. In this context, where both the AP and the legacy stations use CSMA/CA to access the channel, a very challenging aspect is the coexistence between both types of stations, where naturally the AP should have priority but legacy stations should not be excluded. In this paper we present a deep reinforcement learning system that adjusts the contention window so as to maximize a certain notion of fairness. Differently to previous proposals, none of which to the best of our knowledge focused on this mixed scenario, the choice of parameters that characterize the environment is informed on existing 802.11 models. This results for instance in a stable choice of the contention window and larger throughputs. Thorough simulations corroborate the performance of the proposed method, which we make available at https://github.com/ffrommel/RLinWiFi.es
dc.format.extent6 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectDeep learninges
dc.subjectWireless LANes
dc.subjectReinforcement learninges
dc.subjectIEEE 802.11ax Standardes
dc.subjectThroughputes
dc.subjectProposalses
dc.subjectCSMA/CAes
dc.subjectOFDMAes
dc.subjectFairnesses
dc.subjectDeep reinforcement learninges
dc.titleReinforcement learning based coexistence in mixed 802.11ax and legacy WLANs.es
dc.typePonenciaes
dc.contributor.filiacionFrommel Araújo Fabián, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCapdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FCL23.pdfVersión enviada393,13 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons