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Abstract—The new 802.11 amendment, 802.11ax, represents a
significant shift in the WLAN operation, specially in the MAC
layer where the access mechanism is now OFDMA. In particular,
the Access Point (AP) is now responsible for scheduling the
terminals’ transmissions, which avoids collisions and results in an
efficient usage of the spectrum. However, a full transition to this
new technology is not foreseeable for several years, and until
then mixed scenarios that also include legacy stations will be
predominant. In this context, where both the AP and the legacy
stations use CSMA/CA to access the channel, a very challenging
aspect is the coexistence between both types of stations, where
naturally the AP should have priority but legacy stations should
not be excluded. In this paper we present a deep reinforcement
learning system that adjusts the contention window so as to
maximize a certain notion of fairness. Differently to previous
proposals, none of which to the best of our knowledge focused
on this mixed scenario, the choice of parameters that characterize
the environment is informed on existing 802.11 models. This
results for instance in a stable choice of the contention window
and larger throughputs. Thorough simulations corroborate the
performance of the proposed method, which we make available
at https://github.com/ffrommel/RLinWiFi.

Index Terms—CSMA/CA, OFDMA, Fairness, Deep Reinforce-
ment Learning

I. INTRODUCTION

IEEE 802.11 or Wi-Fi, as it is commercially known, is
the most popular access technology. In terms of traffic,
Wi-Fi networks have accounted for approximately 5 times
more traffic than mobile networks in 2020 [1]. Even when
considering handheld devices only, traffic accessed through
Wi-Fi accounted for a portion of over 60%. Furthermore,
the COVID pandemic has reverted a historical trend towards
cellular access.

This popularity has resulted in extremely dense scenarios
where, after several amendments that strived at increasing raw
data rates, the traditional CSMA/CA access mechanism has
been singled out as the system’s bottleneck. In this context, the
latest major amendment, 802.11ax or Wi-Fi 6 [2], represents
a significant shift as it turned to OFDMA for improved
efficiency. It is now the Access Point (AP) that schedules the
terminals’1 use of the spectrum [3].

However, a full transition to 802.11ax is expected to take
several years. In the meantime, coexistence scenarios are to be
the rule, where the legacy terminals compete for the medium
with the AP, which should naturally have priority access as
it schedules 802.11ax terminals. This poses the challenge of

1We will use the term terminal or station interchangeably.

fair resource sharing between legacy and 802.11ax terminals.
The typical approach to this kind of problems is to consider
a model of the system and adjust operation parameters so
as to optimize an objective function that in turn enforces a
certain notion of fairness (see for instance [4]–[6]). However,
to the best of our knowledge no satisfactory model for this
coexistence mixed scenario exists to date.

In this paper we turn instead to reinforcement learning to
solve this problem [7]. That is to say, we take a data-driven
approach, where the AP learns to optimize the operation pa-
rameters based on its past experience. However, and differently
to previous efforts in this direction [8], we design a model-
informed learning system. That is to say, in the definition of
the environment’s state, we consider those indicators that are
relevant according to existing models [9]. The actual mapping
between these indicators and the reward, as well as choosing
the next action, are left to the learning module.

In particular, we focus on adapting the contention window,
as it is easily distributed from the AP to the terminals and has a
large impact on the resulting resource distribution. As we will
show through extensive simulations including several traffic
patterns (UDP, TCP, uplink and/or downlink), this careful state
definition avoids unstable choices of the contention window,
resulting in a larger throughput in legacy-only scenarios than
both a static choice or past proposals. As we mentioned before,
the mixed scenario calls for the definition of a reward that takes
into account fairness between legacy and 802.11ax terminals.
The proposed system is flexible enough to accommodate this
variant, where we show through simulations that our proposal
is capable of choosing a contention window for each type
of terminal that results in a fair distribution of throughput
between them.

The rest of the article is structured as follows. After dis-
cussing previous efforts to include machine learning in general
and reinforcement learning in particular to Wi-Fi networks in
the next section, we present a first version of our proposal
in Sec. III. A complete system that considers the coexistence
scenario is presented and evaluated in Sec. IV, after which the
article is concluded in Sec. V.

II. REINFORCEMENT LEARNING IN WI-FI

Many models have been developed for Wi-Fi networks, cov-
ering different cases such as saturated scenarios, UDP and TCP
traffic, multirate WLANs, and qualitiy of service/experience
(QoS/QoE) aspects [9]. All of them have been extremely



Fig. 1. Basic reinforcement learning model. The agent observes the envi-
ronment and takes an action, which produces a reward. This is sequentially
repeated and the objective is to maximize the long-term averaged reward.

useful for understanding the operation of the network, identi-
fying problems and proposing new amendments to solve them.
However, all of them have limitations that make their direct
application in real-time decision making extremely difficult.
The great variability that a Wi-Fi operational network poses
in the real world turns out to be very complex for the
development of mathematical models that cover all possible
cases. In this context, it is precisely where the use of machine
learning (ML) is most appropriate, since it enables to develop
novel models from the data that represents each of the different
scenarios and situations that could occur in real network
operation [9].

Within ML, reinforcement learning (RL) is probably the
best approach if what we are looking for is to solve sequential
decision-making problems, such as optimizing (in some sense)
the operation of the network. As we can see in Figure 1,
the basic RL model has an agent that interacts with its
environment to make decisions. The goal is to find a policy
that determines the optimal actions to be taken according to
the state of the system at each moment. To achieve this there
are different methods, such as those based on the estimation of
a value function (Q-learning) or actor-critic models (for more
details refer to [10]).

With the rise of deep learning (DL) in recent years, RL
methods have also integrated these techniques into the algo-
rithms, such as the iconic autonomous Atari player developed
based on deep reinforcement learning (DRL) [11]. In this case,
a neural network is used to learn the Q-value function, the so-
called Deep Q-Network (DQN), which is a suitable approach
for high-dimensional continuous state spaces.

Many recent works focus on ML and RL algorithms applied
to Wi-Fi networks [12], which hints at the current relevance
of the research topic. Different applications and use cases are
addressed with these techniques, such as link configuration,
channel access, beamforming and spatial reuse, among many
others (refer to [13] for more examples).

As previously mentioned, the present work is focused on
the coexistence scenario that will dominate WLANs during
the already ongoing transition from legacy Wi-Fi to 802.11ax.
Although there are some previous works on coexistence
(e.g. [14], [15]), all of them are related to the mixed scenarios

between Wi-Fi and other technologies (e.g. LTE in unlicensed
bands or cognitive networks), but none of them focuses on our
case of interest.

III. A MODEL-INFORMED LEARNING SYSTEM FOR
ADJUSTING THE CONTENTION WINDOW

A. Discussion

We propose an RL-based solution, which enables the Wi-
Fi APs to dynamically select the optimal network parameters
based on data collected from the network operation. Similarly
to other previous works, the network parameter selected as
optimization variable is the MAC layer maximum contention
window (CW)2, given its key role in the medium access control
mechanism based on CSMA/CA.

However, there are some important contributions in our pro-
posal that we highlight next. First off, our main requirement is
that we are looking for a solution that is feasible to implement.
To this end, the proposed system needs the participation of
the AP only, unlike other proposals where terminals are also
involved in the RL algorithm loop or have to modify the
standard backoff mechanism of CSMA/CA (e.g. [16], [17]).

We base our model on the network visibility that the
AP has, strengthening the central role for medium access
control asigned in the new 802.11ax OFDMA scheme. Our
approach follows the same direction as [8], where the authors
present a centralized contention window optimization with
DRL (CCOD). This method is based on deep deterministic
policy gradient (DDPG), a DRL technique that runs in the
network AP to dynamically select the optimal CW. Within the
same general scheme, we introduce two major improvements
to enhance the system performance.

On the one hand, based on classical 802.11 MAC layer
analytical models, we consider an extended system space-
state definition, which not only takes into account the network
collision probability, but also the number of active terminals in
the network. We will show its effect in the proposed algorithm
performance, which reaches better and more robust results.
On the other hand, we modify the reward function used in
the RL framework. Utility functions such as the total network
throughput are prone to the well known starvation issue, which
could lead to unfair situations between different terminals.
This point is crucial in a mixed scenario consisting of 802.11ax
and legacy terminals. We address this issue by means of
utility functions which lead to proportional fairness optimum
solutions, presenting how to fit them into the RL scheme to
be used.

Finally, and as we mentioned before, none of the previous
works address the 802.11ax transition scenario. In this net-
works we have two different kind of stations, concerning the
novel OFDMA medium access. While the 802.11ax capable
terminals will follow the AP directives to know when to
transmit, using the assigned spectrum portion (termed resource

2Please recall that this means that before transmitting, each station will
uniformly at random select the number of slots it will spend in backoff from
the interval [0,CW].



units or RUs) on each access round, legacy terminals will
continue using CSMA/CA based access. The next section will
present how the proposed algorithm deals with this situation
in the RL framework defined.

B. Legacy-Only Scenario and the Environment’s Definition

In this subsection we discuss the importance of an informed
definition of the parameters that characterize the environment
when using a RL algorithm. To this end, we will take as
a baseline CCOD, the proposal we mentioned before [8],
corresponding to a DRL algorithm that runs in the network
AP to dynamically adjust the MAC layer CW in order to
maximize the total throughput. In this case the system state
model is the estimated collision probability in the network. As
we will show shortly, it is not possible to appropriately control
the system operation by means of this variable only.

Consider a scenario where an increasing number of legacy
stations start transmitting uplink UDP traffic. This simple
example may be analytically studied by means of classical
802.11 MAC layer mathematical models (such as Bianchi’s
seminal work [18]), from which an expression for the collision
probability and total throughput may be obtained as a function
of the number of transmitting stations and the configured CW.
A simple grid search is enough to estimate the optimal CW, re-
sulting in an increasing optimal CW as the number of stations
increases, which in turn results in a collision probability that
is roughly constant independently of the number of stations.

The previous discussion means that representing the en-
vironment’s state with the collision probability only leads
to ambiguous situations. Even when exposed to scenarios
with different number of stations, the agent will not learn to
estimate the optimal CW if using the collision probability only.

This is verified in the simulation result shown in Figure 2,3

which compares the CW obtained by CCOD with the optimal
value as estimated by the analytical model as the number
of stations increases. In particular, five stations are initially
transmitting, and a single new station is activated every 300
seconds until 25 are transmitting simultaneously. CCOD was
trained under this same scenario, and the figure shows the
results of the trained system. As we explained before, CCOD
presents an unstable behavior when varying the number of
terminals and the selected CW has large oscillations.

In order to address this model limitation, we propose to
incorporate to the system space-state definition the number of
active stations in the network as another state variable. It is
worth noting that this number could be different to the total
number of stations associated to the AP, as only active stations
should be considered. That is to say only those stations that
are actually contending for the medium access in a given time.

In our system, the RL-agent runs in the network AP, so
both observation variables should be estimated by it. For this
purpose, we compute the collision probability as in [8], taking

3All of the simulations we present here are based on ns-3 [19], PyTorch [20]
and ns3-gym [21], using similar settings as in [8] (e.g. single AP, 20 MHz
channel, single-user transmissions, frame aggregation disabled). Details are
available at https://github.com/ffrommel/RLinWiFi.
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Fig. 2. The CW chosen by CCOD [8] as the number of stations increases
from 5 to 25 (compared to the optimal choice computed based on an analytical
model). Since CCOD represents the environment only through the collision
probability, the chosen CW oscillates.

the mean and variance values for the latest time windows of
the considered network history. To keep track of the active
stations, the AP accounts only those stations that transmit
a number of frames above a certain threshold, considering
the same history length than for the collision probability
estimation.

The new system state proposal results in a novel model-
informed learning agent, that we will now show is able to adapt
the CW properly to different changes in network conditions.
In the experiments of the next subsections we will still use
as reward function the total network throughput, to be able to
compare the results in [8]. Then, in Section IV we will discuss
about fairness issues and the coexistence scenarios between
802.11ax and legacy devices, and present a solution that fits
into the same RL scheme.

1) Variations in the Number of Stations: The first case sce-
nario analyzed corresponds to the same presented in Figure 2.
Recall that the number of active stations in the network varies
from 5 to 25 stations, all of them transmitting uplink UDP
traffic to the AP. Similarly to CCOD, in order to train the RL
agent, the exploration training phase covers all the different
number of transmitting stations and also several CW choices.
For this purpose a random noise is used at the agent in order
to densely traverse the action-space. Finally, in the evaluation
phase the noise is turned off, and the agent selects the CW at
each stage according to the trained model.

Figure 3 presents the results obtained for the model-
informed agent, showing how the selected CW evolves during
the evaluation phase, as well as the CW corresponding to the
optimal as computed by the 802.11 saturation mathematical
model [18]. It is important to note that the agent is able to
follow the network dynamics properly without oscillations.
These results demonstrate that integrating the number of active
stations into space-state model is a suitable approach, enabling
the agent to accurately identify the system dynamics and adapt
the CW accordingly.

2) Variations in Carried Traffic: Another relevant case
scenario which is expected that the agent would be able to
deal with is when the type of traffic changes during network
operation. That is to say, what happens when traffic varies from
UDP to TCP and viceversa. In this case it is relevant again
to account for the number of active stations in the network,
because when we have TCP traffic it is well known that only
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Fig. 3. The CW chosen by our model-informed learning agent as the number
of stations increases from 5 to 25 (compared to the optimal choice computed
based on an analytical model). The inclusion of the number of active stations
to represent the environment results in the optimum CW being chosen.
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Fig. 4. Model-informed learning agent results when traffic type changes
(UDP/TCP) during network operation. The definition of active stations in
the environment characterization is key in choosing a smaller CW for TCP
than UDP traffic.

a few stations are active each time (as most of them are
waiting for TCP ACKs from the AP) [9]. This fact implies
that when the total number of stations in the network increases,
the optimal CW value for UDP traffic tend to be significantly
higher than the corresponding one for TCP traffic.

For this purpose, a dynamic scenario was simulated, consist-
ing of a constant number of 25 stations, which continuously
sends traffic to the AP, but switching between UDP and TCP
traffic. In this context, the RL agent was trained the same way
than in the previous case, with a exploration phase covering
different network traffic for the several possible values of the
action-space (i.e. the CW values).

In Figure 4 we can see the evolution of the selected CW.
As indicated in the graph, the first part of the simulation
corresponds to the exploration phase, where the agent is being
trained. As soon as this phase ends, the already trained agent
starts its operation, where it reaches a stable result. Note that
the assigned CW value is higher for UDP traffic than for TCP
traffic.

The results shown in Figure 4 confirm that the agent is being
able to converge properly in the learning phase, achieving a
robust CW adaptation after completing this stage. In Table I
the convergence results are detailed, confirming that the CW
values selected by the agent for each type of traffic are in line
with the theoretical optimum expected values.

IV. COEXISTENCE BETWEEN IEEE 802.11AX AND
LEGACY TERMINALS

A. Maximum Efficiency

We will now consider a scenario where an 802.11ax AP
serves both 802.11ax and legacy terminals. To this end, let us
first very briefly recall how the new standard operates in this

TABLE I
MODEL-INFORMED LEARNING AGENT RESULTS DURING EVALUATION

USING DIFFERENT TYPE OF TRAFFIC SCENARIOS.

Traffic n CW p Throughput
TCP DL 25 15 0.06 31.3 Mbps
UDP UL 25 170 0.2 38.3 Mbps

Fig. 5. Schematic representation and update process of CWs in the model-
informed learning method. The agent takes into account a sequence of mean
and variance collision probability, as well as the number of active legacy and
ax stations (STAs) to choose the next legacy and ax CW.

scenario. In the uplink sense, 802.11ax terminals only transmit
when the AP indicates so, which is performed through a so-
called Trigger Frame. This special frame includes the list of
stations that will transmit, as well as common and specific
parameters to be used during the transmission (e.g. guard
interval and RUs of each station respectively). This frame
is immediately followed by the transmission of the indicated
terminals.

So as to allow legacy terminals to operate, the AP still runs
CSMA/CA to access the channel, both for trigger frames and
downlink data (where each frame now includes transmissions
for several 802.11ax terminals by means of OFDMA). Natu-
rally, the AP should have preferential access as it serves several
stations, typically by means of a smaller contention window.
However, the precise contention window value to choose is
not specified in the standard, and in this section we propose
to set it dynamically through DRL.

Note that we now have two contention windows to set: one
corresponding to the AP (which will affect transmissions from
and to 802.11ax terminals) and another value corresponding to
legacy terminals. It was necessary then to extend the system
we proposed in the previous section to use an environment
with terminals of these two types and an agent that, from the
observation of the environment, can select the value of two
CWs. In particular, the environment is now characterized by
the collision probability as before, but we now include the
number of both legacy and 802.11ax active stations. Figure 5
provides a schematic representation of the learning system we
propose for mixed scenarios.

Let us illustrate the new scenario with an example. Consider
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Fig. 6. Results for training the agent to maximize the total throughput when
10 legacy and ax terminals are transmitting uplink UDP traffic. The very large
CW for legacy devices results in a total throughput of about 88.5 Mbps, where
only about 3.5 Mbps are for the legacy devices.

UDP uplink transmissions, in a static scenario with a fixed
number of l = 10 802.11ax and m = 10 legacy stations. If we
were to reward the system in terms of the total throughput only
(as before), the obtained results are shown in Figure 6. Note
that, as expected, the learning system prioritizes transmis-
sions from 802.11ax terminals, given how their transmissions
are much more efficient in the channel usage. In terms of
throughput, the result is almost the complete exclusion of
legacy terminals from transmissions: legacy stations registered
a average value of only 3.5 Mbps, while 802.11ax averaged
85 Mbps. The challenge is thus to bring certain notion of
fairness to the learning system, so as to avoid this undesirable
behavior.

B. Fair Coexistence
The idea of fairness between terminals of different types in

IEEE 802.11 networks has been studied mostly in the context
of different data rates. In particular, the problem is posed in
term of airtime fairness, which translates into a fair distribution
of channel usage over time. There are variations on its imple-
mentation, such as token-bucket regulator [22], airtime deficit
round-robin scheduler [23], contention window controller [24],
and 802.11e TXOP [25]. Other works, however, use the notion
of utility maximization to allow a balance between fairness and
spectrum efficiency. Basically, the economics-inspired idea
is that each user will get a certain increasing and concave
utility out of the received throughput, and the objective is
to maximize the overall welfare measured through the sum
of these utilities. In the context of networking, it was first
applied to congestion control in the seminal paper by Kelly
et al. [26], but has been since extended to several other
areas, including naturally Wi-Fi [27]. For instance, in [28] a
modified CSMA algorithm is introduced that implements this
idea and compares its performance with other fairness criteria,
including airtime fairness.

This framework is particularly suited for (D)RL, as it is
posed as an optimization problem. In particular, we consider
a certain time window (e.g. the last second) and measure Si,
the throughput of each active station during that time, both for
802.11ax and legacy stations (i.e. i = 1, . . . , l +m). We may
thus define the reward as:

r =

l+m∑
i=0

1

1− α
S1−α
i , (1)
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Fig. 7. Results for training the agent to maximize the total utility (Eq. (1))
when 10 legacy and ax terminals are transmitting uplink UDP traffic. Although
ax terminals are still prioritized, legacy terminals obtain a much smaller CW
(cf. Fig. 6).

TABLE II
RESULTS FOR THE CWS CHOSEN BY THE LEARNING ALGORITHM (IN

BOLD), AND BY MANUALLY CHOOSING OTHER VALUES.

CW Throughput [Mbps] Utility
Legacy ax Legacy ax Total Relative

150 15 26.8 25.8 52.6 1.00
75 75 28.4 20.7 49.1 0.91
300 15 23.9 25.7 49.6 0.94
75 15 27.6 22.4 50.0 0.94
300 75 24.3 24.5 48.8 0.92

which results in the so-called α-fairness [29]. The parameter
α controls the balance between efficiency (α = 0 maximizes
the sum, as before), and complete fairness (α → ∞ results in
max-min fairness, maximizing the rate of the station with the
smallest rate). The so-called proportional fairness is a mid-
point obtained by using α → 1, and the one we use in the
example that follows, although the network administrator is
free to choose any other utility function.

Figure 7 shows the results corresponding to the same
scenario as before, but using this fairness-aware reward. It
can be seen how now the legacy CW converges to a much
smaller value. This results in a throughput for legacy and
802.11ax terminals of approximately 25 Mbps each, totaling
about 50 Mbps. Although the total throughput is smaller than
before, this lower efficiency allows for legacy stations to be
able to use the network fairly.

As we mentioned before, no model exists for this mixed
scenario. In order to verify that the agents obtains an optimal
CW, Table II shows the resulting throughput and utility when
manually changing the CWs. Note that the agent has chosen
the minimum possible CW for the ax terminals (15). We thus
evaluate what happens when we increase this value, whereas
for the legacy ones we explore values around the chosen one.
For instance, doubling the CW for legacy stations from 150
to 300 results in a lower throughput for them, whereas the
ax stations are not able to increase their throughput, all in all
resulting in a lower total utility.

V. CONCLUSIONS AND FUTURE WORK

Since the IEEE approved the new 802.11ax amendment,
a new cycle of technological transition began for Wi-Fi
networks. This is not new, as it happened before every time



a new amendment was approved. However, this transition
to 802.11ax will be different from all previous ones, since
for the first time the MAC layer access is modified. The
traditional medium access control based on CSMA/CA, is
replaced by OFDMA, giving to the AP all the resource
allocation responsibility. This means that over the next years
two very different access mechanisms will have to coexist in
Wi-Fi networks, one for 802.11ax devices and the other for
legacy ones.

Our work focuses precisely on this 802.11ax coexistence
scenario, so relevant to the operation of Wi-Fi networks in the
years to come. We propose an algorithm based on deep rein-
forcement learning (DRL), in order to properly solve resource
allocation, by means of dynamically adapting the contention
window. The DRL-based agent runs in the network AP, which
emphasizes the central role that the new standard already
granted to it for medium access control. A salient feature of
our proposal is that it is a model-informed learning agent, as
the state-space of the RL model is based on the estimation
of the two main variables in previous analytical models for
the MAC layer: collision probability and the number of active
terminals in the network.

Extensive simulations show that the agent operates as ex-
pected in different scenarios, reacting properly when network
conditions change, such as the number of terminals as well as
in the traffic type. This results verify a robust behaviour of the
agent, with stable choices of the CW and larger throughputs.
Moreover, we further discuss on fairness issues, integrating
a different reward function to the same RL scheme, in order
to guarantee a fair traffic share between 802.11ax and legacy
stations. In future work, this point could be further studied,
for example evaluating parametric reward functions, which
would enable network administrators to select the desired
traffic sharing between 802.11ax and legacy terminals when
configuring the APs.

REFERENCES

[1] Wireless network data traffic: worldwide trends
and forecasts 2021–2026. Analysys Mason. [On-
line]. Available: https://www.analysysmason.com/research/content/
regional-forecasts-/wireless-traffic-forecast-rdnt0/

[2] IEEE 802.11ax-2021 - IEEE Standard for Information Technology.
https://standards.ieee.org/standard/802\ 11ax-2021.html.

[3] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A Tutorial
on IEEE 802.11ax High Efficiency WLANs,” IEEE Communications
Surveys Tutorials, vol. 21, no. 1, pp. 197–216, 2019.

[4] P. Gallo, K. Kosek-Szott, S. Szott, and I. Tinnirello, “CADWAN: A
Control Architecture for Dense WiFi Access Networks,” IEEE Commu-
nications Magazine, vol. 56, no. 1, pp. 194–201, 2018.

[5] D.-J. Deng, C.-H. Ke, H.-H. Chen, and Y.-M. Huang, “Contention
window optimization for ieee 802.11 DCF access control,” IEEE Trans-
actions on Wireless Communications, vol. 7, no. 12, pp. 5129–5135,
2008.

[6] K. Hong, S. Lee, K. Kim, and Y. Kim, “Channel condition based
contention window adaptation in ieee 802.11 wlans,” IEEE Transactions
on Communications, vol. 60, no. 2, pp. 469–478, 2012.

[7] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.
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