Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/36907
Cómo citar
Título: | Determination of adsorption energies from DFT databases using machine learning techniques. |
Autor: | Arsuaga, José I. Torres, Ana I. |
Tipo: | Preprint |
Palabras clave: | Adsorption energies, Machine learning, Electrocatalysis |
Fecha de publicación: | 2022 |
Resumen: | This paper discusses the estimation of adsorption energies for reaction intermediates for a given metallic surface and molecule. Regression models are learned from DFT data available in the literature in a two step approach. First, metallic surfaces are characterized by a principal component analysis (PCA) followed by a suitable orthonormal rotation to find a set of species that can be used as descriptors for the metallic surface. Then, different machine learning techniques are considered for the regression using the previous descriptors for the metallic surface and molecular descriptors such as the number and type of bonds for the adsorbate. With the available data, CH3, CO2 and CH2 were found to explain 93% of the total variance, thus were used as surface descriptors. Threeof the tested models were found to adjust similarly well to validation data. |
Descripción: | Part of volume of Proccedings of the 32nd European Symposium on Computer Aided Process Engineering (ESCAPE32), Toulouse, France, June 12-15, 2022. Publicado en Computer Aided Chemical Engineering, vol.51, 2022, pp. 1513-1518. |
Financiadores: | Agencia Nacional de Investigación e Innovación. ANII FSE 2018_1_152900. |
Citación: | Arsuaga, J. y Torres, A. Determination of adsorption energies from DFT databases using machine learning techniques [Preprint]. Publicado en : Computer Aided Chemical Engineering, vol.51, 2022, pp. 1513-1518. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
AT22.pdf | Preprint | 425,55 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons