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Abstract 

This paper discusses the estimation of adsorption energies for reaction intermediates for a given 
metallic surface and molecule. Regression models are learned from DFT data available in the lit- 
erature in a two step approach. First, metallic surfaces are characterized by a principal component 
analysis (PCA) followed by a suitable orthonormal rotation to find a set of species that can be used 
as descriptors for the metallic surface. Then, different machine learning techniques are considered 
for the regression using the previous descriptors for the metallic surface and molecular descriptors 
such as the number and type of bonds for the adsorbate. With the available data, CH3, CO2 and CH2 
were found to explain 93% of the total variance, thus were used as surface descriptors. Three of the 
tested models were found to adjust similarly well to validation data. 
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1. Introduction 

Electrocatalytic reactions have recently gained a lot of attention as they can be powered by elec- 
tric energy from renewable non-programmable sources to achieve zero or even negative carbon 
processes. In particular, reduction of CO2 on metallic surfaces is a promising process to transform 
industrial CO2 emissions into valuable fuels and products. However, electrocatalytic processes are 
characterized by their very low selectivity; for example in the case of CO2 many C1 and C2 products 
including acids (e.g formic acid,acetic acid), alcohols (e.g methanol and ethanol), and light 
hydrocarbons (for example ethylene) have been experimentally reported. 

It is clear that the properties of the metallic surface play a role on the selectivity. As examples, 
copper and copper alloys or copper oxides seem to favor the production of ethylene and methanol 
from CO2 (Dinh et al. (2018), Wang et al. (2018)), and platinum the production of CH4 (Umeda 
et al. (2020)). Yet, the reaction mechanisms are not completely understood, and the lack of un- 
derstanding hinders reactor and process design. Reaction network generators can be used to build 
the possible reaction pathways; still, thermodynamical properties of the proposed adsorbates need 
to be known to infer which of the pathways are feasible. One option to compute the required 
thermodynamical properties is the use of density functional theory (DFT). However, this approach 
requires very specialized knowledge, is time consuming and resource intensive in terms of com- 
putational power. Thus, it may not be suitable if a large amount of DFT-derived data is needed for 
calculations in a particular application. 

In this work, we have taken another approach to estimate the required thermodynamic properties 
(adsorption energies) which is based on machine learning using data from DFT that is already 
available in the literature. Figure 1 schematizes the procedure. The rationale is that adsorption 



 

 
 

 
 

Figure 1: Schematic of the machine learning approach to find a model for estimating adsorption 
energies of adsorbates in metallic surfaces. 

 

energies depend on properties of the adsorbates (molecules) and properties of the metallic surfaces. 
While it is fairly clear which properties should be considered as descriptors of the molecules 
(e.g. atoms, type and amount of bonds, etc.), it is not that clear which ones should be considered 
for the metallic surfaces. Therefore, the main hypothesis is that given a dataset containing the 
adsorption energies for several adsorbates in different metallic surfaces, it is possible to find a set 
of descriptors for the surfaces that are based on a subset of these energies. This idea is not new, 
Chowdhury et al. (2018) has proposed a similar approach using a dataset of 29 molecules and 8 
metallic surfaces. In here, we have largely expanded the dataset including new surfaces and 
adsorbates, as a result, a different set of descriptors is obtained. On the basis of these new 
descriptors for the surfaces, and those of the molecules, a regression model was trained to predict 
adsorption energies of other molecules on the previous surfaces. The longer term objective is to 
use this regression model together with network generators to predict preferred reaction pathways for 
electrocatalytic reactions of different species on different surfaces. 

 
2. Selection of descriptors of the metallic surface 

As mentioned in the introduction, in order to find a correlation able to estimate the adsorption 
energies of any pair of adsorbate/metallic surface, a way of characterizing the surfaces needs to be 
found. A traditional DFT approach to describe a surface would need for example information on 
the atoms that compose the surface and their geometrical arrangement. These characteristics will 
affect the adsorption energies of all the adsorbates, although the effect on the possible adsorbates 
is different for each one, and depends mainly on the adsorbate itself. The idea then is to find those 
adsorbates whose energy of adsorption changes the most when the metallic surface changes. If this 
set of adsorbates is small, then using them as descriptors of the surface is a very practical and 
efficient way to characterize the surface, as instead of performing DFT calculations for all the 
components, we need DFT calculations for just a few. 

 
2.1. PCA analysis of the energy of adsorption data 

Principal component analysis (PCA) is a technique that given a data matrix MN×P, finds a new 
space of reduced dimensions which conserves a maximum amount of the variance of the original 
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Figure 2: PCA analysis: left plain PCA; right PCA+varimax rotation. In both, green, blue and red 
are first, second and third component respectively. 

 
data. This new space can be built by finding the eigenvectors of the covariance matrix (ΣM) of 
the data in M. To establish which are the principal components of the data in M we look for the 
eigenvectors of ΣM associated with the largest eigenvalues. In practice, those that added together 
make up for a certain threshold of the variance (usually 90-95%). 

In our case, M is the matrix of adsorption energies (taken from DFT databases); each Mnp entry 
is the adsorption energy for the p th adsorbate on the n th metallic surface. Figure 2 shows the 
results of applying PCA to a dataset built using adsorption energies reported in Plauck et al. (2016); 
Herron et al. (2012, 2013, 2014); Xu et al. (2018a); Bai et al. (2019); Ford et al. (2010); Mavrikakis 
et al. (2002); Ojeda et al. (2010); Scaranto and Mavrikakis (2016a); Singh et al. (2014); Scaranto and 
Mavrikakis (2016b); Ferrin et al. (2012); Greeley and Mavrikakis (2002); Ford et al. (2005); Chen 
et al. (2019); Xu et al. (2018b); Krekelberg et al. (2004); Hahn and Mavrikakis (2014); Grabow 
and Mavrikakis (2011); Gokhale et al. (2008); Li et al. (2016); Herron et al. (2014); Salciccioli 
et al. (2010, 2012); Lu et al. (2015, 2012); Schmidt and Thygesen (2018); Wellendorff et al. 
(2015). In here, it is important to mention that to apply PCA-techniques, M has to be complete, 
which means that only those adsorbates for which we found DFT data for all the surfaces of 
interest (Cu,Pt,Pd,Rh,Re,Ru,Ag,Au,Fe,Ir,Os,Co,Ni) were included. 

Figure 2-left shows the three principal components as green (first component), orange (second 
component) and blue (third component) bars. Together these three are able to explain 93% of the 

variance of the original dataset (results obtained using the scikit-learn package in Python 

Pedregosa et al. (2011)). The adsorption energy for each adsorbate can then be expressed in terms 
of these three principal components; the absolute value of the weights that need to be applied are 
represented in the figure by the length of each bar. 

 
2.2. PCA with varimax rotation 

Unfortunately, the results in Fig.2-left are of little use as they are, as the principal components lack 
of physical interpretation. It would be desirable to have results where each component is clearly 
dominated by one or a few adsorbates. This is accomplished by finding a new set of orthogonal 
axis that represent a basis of the same space as the principal components, but in which the axis 
align better with some of the adsorbates. In this way, the coefficients of many of the adsorbates 
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Table 1: Summary of the performance of the regression 
 

Method KRR-poly KRR-rbf KSVR-poly KSVR-rbf CART RF 

RMSE 0.22 0.25 0.23 0.27 0.2 0.15 
RMSE wo/H 0.12 0.13 0.12 0.13 0.18 0.11 

sign mismatch CO2 - CO2 - O - 

 
become zero, and those that are non-zero can be interpreted as the descriptors. 

What was discussed was solved by Kaiser (1958) who proposed to find the new axes by solving 
the optimization problem in Eq. 1. 

 
j=K 1 i=N  ′ 2   2 

 1 ¯ 2   2 

max ∑ ( ∑((A Ri j ) ) −α 2 (A
′Ri j ) )) (1) 

R     
j=1 N 

i=1 N 

s.t : RT R = I 

In here, A is the original P K eigenvector matrix (K = 3 as there are three principal components in 
our case study) and R the K  K rotation matrix. α is a parameter of the problem, if α = 1 Eq. 1 is 
the Varimax rotation. 

Fig.2-right shows the results when applying the varimax rotation. These results indicates that CH3, CO2 
and CH2, as first (79% of the variance), second (9% of the variance) and third component (5% of 
the variance) respectively, can be used as descriptors of the metallic surface (results also obtained 

with scikit-learn). Notice that this is different from the results in Chowdhury et al. (2018) who 
obtained OH and CHCHCO as descriptors. The difference lies in the expansion of the dataset to 
include data from different sources, as the exactly same results as in the Chowdhury et al. (2018) 
are obtained when considering their database. 

 
3. Learning a model to predict adsorption energies 

After a suitable set of descriptors for the metallic surfaces is found, a regression problem that uses 
them and those of the adsorbates, can be formulated to learn a model for the energies of adsorption 
from data. As descriptors of the molecules we have considered the number and type of bonds in 
the adsorbate; we have also added facet and coverage as additional descriptors for the metallic  
surface when available. Notice now that completeness of the data is not required for this step, thus 
all available data can be used. 

The following techniques were considered for learning the model: Kernel Ridge Regression (KRR, 
with polynomial and radial basis functions as kernels), Kernel Support Vector Regression (KSVR, 
with polynomial and radial basis functions as kernels), Classification and regression trees (CART) 
and Random Forest (RF). For the sake of space, we will not describe these methods, they are well  

explained in several references including scikit-learn documentation Pedregosa et al. (2011). 

In all cases, an 8-fold cross validation scheme was performed to define the set of possible values for the 
hyperparameters for each technique. Learning/ validation division of the dataset was 85/15% 
respectively. A summary of the results is in Table 1. As seen KRR-rbf KSVR-rbf and RF provided 
similar results in terms of RMSE over the validation set. Most importantly, they did not predict 
positive energies as negative nor the other way around. This was a problem that we observed when 
using polynomial kernels (wrong sign prediction for CO2) and CART (wrong sign prediction for O). 
From a physical viewpoint, this is troublesome because it would imply that certain adsorbates 
cannot be adsorbed when in reality they can. In here, it has to be commented that we identified 



 

 

some outliers for the energy of adsorption of H (2 out of 90 datapoints for H) from the reported 
DFT data; the table includes the RMSE results with and without considering these outliers



 

 
 

 

Figure 3: Results of the regression using Random Forest. Adjustment for y = x: R2 = 0.96 

 
Finally, Fig.3 presents the predicted vs DFT adsorption energies for data in the validation set. This 
type of plot showing a good regression is typical for all the techniques we have tested. This stresses 
the need of verifying that the chosen model correctly assigns the sign of the energy of adsorption 
for all data in the validation set, a point that may be overseen by just looking for the best RMSE 
and predicted vs real data fitting. 

 

4. Conclusion 

A large data set of DFT-based adsorption energies for different metallic surfaces and adsorbates 
was used to train a regression model. In a first step, PCA followed by Varimax rotation was found 
to be able to characterize the metallic surfaces using CH3, CO2 and CH2 as principal components, 
with a loss of information less than 10% in terms of variance of the data. Six regression models 
based on either Kernel Ridge, Support Vector, CART or Random Forest were considered. All 
models were found to provide good estimations in terms of RMSE, but some had trouble in as- 
signing a correct sign to those adsorbates whose energy of adsorption was close to zero. Those 
that can correctly estimate the sign could be used together with reaction network generators to 
predict thermodynamically feasible pathways. 
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