Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/36832
Cómo citar
Título: | Graph Neural Networks for genome enabled prediction of complex traits. |
Autor: | Hounie, Ignacio Elenter, Juan Etchebarne, Guillermo Fariello, María Inés Lecumberry, Federico |
Tipo: | Póster |
Palabras clave: | Graphical models, GNN, Genomics |
Fecha de publicación: | 2021 |
Resumen: | The advent of Graph Neural Network architectures has enabled Deep Learning on non-Euclidean data, finding numerous applications both inside and outside genomics. Here we introduce these models in the context of Genome enabled prediction of complex traits.Graph representations of genome-wide marker information can be derived treating individuals as nodes, giving place to population graphs, where each genotype is supported on a node. We address graph structures estimated solely from SNP marker data by means of the Genomic Relationship Matrix. That is, we build an association network between individuals using correlations between genotypes.In this scenario we propose a novel neural network architecture supported on these graphs. It leverages both 1D convolutions, which aim to exploit local structures along the genome arising from linkage disequilibrium, and Graph Neighbourhood Aggregation operations, so as to incorporate population structure. First, low dimensional embeddings are computed from locally aggregated genotypes, which are then concatenated with embeddings from the target node and fed to a linear predictor. These embeddings are extracted using convolutional and fully-connected layers and the model is trained end-to -end. In order to circumvent scalability issues, node neighbourhoods are sampled, thus allowing training on large graphs. The model was evaluated in the realm of Holstein cattle milk yield prediction, outperforming state-of-the-art methods. We show that neighborhood aggregation improves performance, which illustrates the potential of graph based techniques. To the best of our knowledge, this is the first Geometric Deep Learning approach to this problem. |
Descripción: | Los experimentos presentados en este trabajo se realizaron utilizando ClusterUY (sitio: https://cluster.uy) |
Editorial: | Cold Spring Harbor Laboratory (CSHL) |
EN: | Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr 2021, Cold Spring Harbor, NY, USA |
Financiadores: | Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364. |
Citación: | Hounie, I., Elenter, J., Etchebarne, G. y otros. Graph Neural Networks for genome enabled prediction of complex traits. [en línea]. Póster, 2021. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
HEEFL21.pdf | Versión definitiva | 940,79 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons