
Graph representations of genome wide marker information can be derived treating 
individuals as nodes, giving place to population graphs, where each genotype is 
supported on a node.   We explore and compare different Graph Neural Network 
architectures for the prediction of complex traits, formulated as a node regression 
problem.
In addition, we propose a model  that  also leverages 1D convolutions, which aim to 
exploit local structures along the genome arising from linkage disequilibrium. 
Besides, we evaluate different graph topologies and find that even using random 
graphs can aid the prediction task.
Models were evaluated on a dataset of Holstein cattle milk yield prediction [1].
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Introduction

Conclusions and perspectives
Formulating complex trait prediction as a node regression problem on a population 
graph enables the use of graphical models, yet unexplored in genomic prediction 
literature.

Single layer models from different Graph Neural Network architectures achieved state 
of the art results in the milk yield prediction dataset. Including Convolutional Neural 
Networks in GNNs increased the predictive accuracy of all models. 

In the light of random graph results, to what extent the graph exploits population 
structure, and how graph topology affects predictions remains unclear. How these 
results generalize to other datasets and traits demands further research.
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After the neighborhood aggregation step, node and neighbourhood embeddings are 
computed. A simple way of constructing these embeddings is using a multi-layer 
perceptron. Due to their regularization properties and inductive biases, Convolutional 
Neural Networks (CNNs) are a promising alternative. CNNs may be able to exploit local 
structure due to SNPs in linkage disequilibrium.

We used a CNN architecture with two main sections. The first one consists of three 
convolutional blocks (with batch normalization and LeakyRelu activation) and has a 
residual connection [7]. The second section, consists of two fully connected layers and 
also has a residual connection. 

CNNs improved performance for all three Graph architectures.

Using CNNs to extract node embeddings 

Finding graph representations of SNP data
Kinship or pedigree  matrices can be used to construct graphs with nodes as 
individuals, as well as Genomic similarity or relationship matrices.
These matrices can be viewed  as the adjacency matrix of an association network i.e., 
one where nodes with a sufficient level  of association between  node  attributes  are  
connected. We employ pairwise Pearson correlations between genotypes to construct 
the graph.

However, using correlations directly often results in dense matrices. Thus, inducing 
sparsity is necessary to reduce computational costs. With this purpose, we explored 
two methods: thresholding and k-nearest neighbours (knn).  It has been shown that 
under certain conditions thresholding is equivalent to Graphical Lasso [2]. 
Alternatively, knn graphs are obtained by keeping only the k larger weights for each 
node, resulting in a graph with constant degree. The topologies of graphs estimated 
with these two methods have significantly different structures.

Node degree histogram for a graph with 5024 
nodes, constructed using Pearson correlations 
with a threshold of 0.55. Although its mean 
degree is 40, graph connectivity is significantly 
different from a knn graph where the same 
degree is imposed to all nodes. Notably, 
thresholding produces a large number of nodes 
with few neighbours and some with large 
degree. For instance, while there are five nodes 
with degree greater than 300, 1378  nodes  have  
degrees under 25. This is related to population 
structure. 

The effectiveness of random graphs 
In order to assess the effect of graph topology on predictions, we generated two types 
of random graphs. The first random graph was constructed by sampling values from a 
Gaussian distribution with the same mean and variance as the original graph. The 
second one corresponds to an Erdös–Rényi model (i.e: edges are modelled by 
independent Bernoulli random variables), having the same mean degree.  Then, we 
trained Sage based models on these graphs and compared their predictive accuracies 
with our best Sage model.
Randomly connected graphs did not degrade model predictive accuracy significantly.We explored three popular GNN architectures: Graph Sage [3], Graph Attention [4], 

and Edge Convolutions [5]. These Graph Neural Network architectures can be 
described as the composition of layers consisting of a neighbourhood aggregation 
function and a node embedding extractor, followed by a non-linear activation. In the 
case of Graph Sage, a layer is described by the following equation:
 

where    is a non-linear activation function,      is the genotype of the i-th individual 
and         its neighbourhood.                   are linear projection matrices.      
A fully connected layer is used to output phenotype predictions. During training, node 
neighbourhoods were sampled to reduce computational costs and induce 
regularization.
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Diagram adapted from [3].

We explored three popular GNN architectures: Graph Sage[], Graph Attention[], and 
Edge Convolutions[]. The Graph Neural Network architectures we explored can be 
described as the composition of layers consisting of a neighbourhood aggregation 
function g and node embedding extractors h:

Where Ni is the node 
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GNN performance as measured by Pearson correlation (r) of single layer graph neural network models. 
Results  correspond to 12 random train/test splits with 80 and 20% of the data, respectively. 
All models were trained using dropout, batch normalization, early stopping and a reduce on plateau 
Learning Rate scheduler. SGD with Nesterov momentum with Sharpness Aware Minimization[8] was used. 
Results from [6] are included for comparison.
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Sage+CNN model trained using different 
graph adjacency matrices. All graphs have a 
mean degree of 40. Non-Random 
corresponds to the thresholded (0.55) 
Pearson correlation graph. 
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