Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/36564
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Mariño, Camilo | - |
dc.contributor.author | Cossio, Guillermo | - |
dc.contributor.author | Massaferro Saquieres, Pablo | - |
dc.contributor.author | Di Martino, Matías | - |
dc.contributor.author | Gómez, Alvaro | - |
dc.contributor.author | Fernández, Alicia | - |
dc.coverage.spatial | Uruguay | es |
dc.coverage.spatial | Costa Rica | es |
dc.date.accessioned | 2023-03-29T11:59:23Z | - |
dc.date.available | 2023-03-29T11:59:23Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Mariño, C, Cossio, G, Massaferro Saquieres, P. y otros. NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives [en línea]. EN: 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan 2023, pp 1-5. DOI: 10.1109/ISGT51731.2023.10066441 | es |
dc.identifier.uri | https://ieee-isgt.org/ | - |
dc.identifier.uri | https://ieeexplore.ieee.org/document/10066441 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/36564 | - |
dc.description.abstract | Due to its impact on household energy use and the adoption of renewable energies, the intelligent management of the power consumption of electric vehicles (EVs) is of great relevance. In the context of widespread clean energy adoption and growing environmental concerns, generating incentives through discounted rates for intelligent residential EV power consumption requires algorithms capable of measuring loads in a disaggregated manner. The deployment of smart meter networks offers the possibility of applying machine learning techniques to estimate EV residential consumption. This work presents an efficient algorithm for the Non Intrusive Load Monitoring (NILM) of EV consumption, which is an adaptation of a method previously proposed for high-powered water heaters. Its performance is compared with methods based on deep neural networks. Results from an actual power demand dataset are discussed, and a comparative analysis is carried out against billing rules based on time slots and historical power consumption data. | es |
dc.description.sponsorship | Beca Maestría CAP Camilo Mariño | es |
dc.description.sponsorship | Proyecto bajo financiación convenio UTE | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | IEEE | es |
dc.relation.ispartof | 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan, pp 1-5 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | NILM | es |
dc.subject | Electric vehicles | es |
dc.subject | Load disaggregation | es |
dc.subject | Deep learning | es |
dc.subject | Renewable energy sources | es |
dc.subject | Power demand | es |
dc.subject | Machine learning algorithms | es |
dc.subject | Neural networks | es |
dc.subject | Water heating | es |
dc.subject | Electric vehicles | es |
dc.title | NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Cossio Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Di Martino Matías, Duke University | - |
dc.contributor.filiacion | Gómez Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
dc.identifier.doi | 10.1109/ISGT51731.2023.10066441 | - |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
MCMDGF23.pdf | Versión final | 315,19 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons