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Abstract—Due to its impact on household energy use and the
adoption of renewable energies, the intelligent management of the
power consumption of electric vehicles (EVs) is of great relevance.
In the context of widespread clean energy adoption and growing
environmental concerns, generating incentives through discounted
rates for intelligent residential EV power consumption requires
algorithms capable of measuring loads in a disaggregated manner.
The deployment of smart meter networks offers the possibility of
applying machine learning techniques to estimate EV residential
consumption. This work presents an efficient algorithm for the Non
Intrusive Load Monitoring (NILM) of EV consumption, which is an
adaptation of a method previously proposed for high-powered water
heaters. Its performance is compared with methods based on deep
neural networks. Results from an actual power demand dataset are
discussed, and a comparative analysis is carried out against billing
rules based on time slots and historical power consumption data.

Index Terms—NILM, Electric Vehicles, load disaggregation

I. INTRODUCTION

The estimation of household electricity consumption, broken
down by use, is essential information for both generation and
distribution companies and users. In a context of change in the
energy matrix and renewable energy adoption, it is critical to
generate incentives for the intelligent use of resources, with the
accompanying economic and environmental impact.

Analyzing household energy consumption patterns allows for
identifying activities that can be deferred over time to adjust
energy demand to generation. One of the most common incentives
for customers is differentiated rate plans, typically by time slots.
The hourly consumption information can be obtained directly
from the meter installed at each customer’s network access point.
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However, other energy rate plans could be envisioned, taking into
account the use given to energy.

Electric transport is a growing area worldwide. EV charging
will significantly impact all the electrical grid’s processes, with
demand management taking on particular relevance. The power
demand of any system capable of accumulating energy is poten-
tially deferrable. This property is one of the reasons why energy
companies are interested in analyzing the consumption patterns
of electric vehicles (EVs).

Data from intrusive meters and aggregated consumption meters
for the whole household makes it possible to address the problem
with supervised disaggregation strategies based on deep learning
[1], [2], [3], something that is difficult when there are no intrusive
measurements available.

The availability and characteristics of public or private datasets,
with or without labels, impose restrictions on model selection and
training. In a recent paper by [4], the problem of disaggregation
of high-consumption water heaters is addressed with a suitable
strategy for the case where intrusive data is unavailable to train
disaggregation algorithms with ground truth. Given the level of
power used by those heaters and the shape of their activations,
a similar approach could be used to estimate EV consumption
when intrusive measures are unavailable.

II. PROPOSED APPROACH

The consumption curves of measured EVs and the water heaters
follow similar on-off patterns. In Uruguay, Fig. 12, [5], water
heaters have consumption curves, similar to Costa Rica, Fig. 2
[4]. In both cases, the water heaters have ON-OFF characteristics
similar to those of electric vehicles, see Fig. 1. All of them
meet the working hypotheses of the algorithm. This similarity



makes it reasonable to think that disaggregation algorithms with
good performance for high-power water heaters can be adapted
for the disaggregation of EV consumption. This approach can
be appropriated when there is an incipient EV fleet and little
historical information on consumption patterns. In this context,
we set out to adapt the algorithm proposed by [4] to disaggregate
EV, taking into account its simplicity and the fact that it does not
require large volumes of intrusive data for its parameterization.
The code developed while designing and evaluating the algorithm
will be made available.

The algorithm is comprised of three distinct stages. In the first
stage, the active power consumed by the EV during charging
periods is estimated. In the second one, the algorithm detects
large jumps in the building’s power consumption, which will be
used to demarcate charging periods. Finally, the disaggregated
average power of the EV during the charging periods is defined.

The following hypotheses are assumed when disaggregating
loads with this algorithm: a) The rated charging power of the
EV is greater than the rated power of all other appliances in
a residential building. b) The load curve of the EV is quasi-
rectangular. Its power consumption is approximately constant
while it charges. c) The time series includes EV consumption
(i.e., an EV charging period appears at some point in the series).

The different stages of the proposed algorithm are described
below.

1) Stage 1 - EV power estimation: The estimation of EV
charging power is based on the histogram of power samples from
the aggregate household as in [4]. This is justified, for water
heaters, because the disaggregated loads usually have the same
power consumption and are turned on many times throughout
the day, while most domestic loads have a more variable power
consumption. Therefore, a peak with more samples than the rest
should be visible in the power sample histogram, corresponding
to the usual power consumption of the EV. This is particularly
true when high-frequency samples are available, but it is still
noticeable with a sample period of 15 minutes for EV charging
patterns that usually last for many hours.

The following criterion is used to determine if bin i (the set of
samples that form the i-th column of the histogram) is an outlier
to the typical consumption of the rest of the appliances in the
building:

di ≥ dQ3 + 1.5 (dQ3 − dQ1) where di is the density of bin i,
dQ3 is the third density quartile and dQ1 is the first one.

The histogram is computed with all samples above a certain
power Pthreshold, to filter out the samples from periods where the
EV was not being charged. The estimation method parameter is
used to choose whether the samples or the jumps between samples
are used. After computing the histogram, the algorithm checks if
the bin with the most samples is an outlier. If so, the average
power of the samples within it is taken as the estimate of PEV .

As mentioned at the beginning of this section, it is assumed

that there is at least one EV charging period in the time series.
Therefore, if no outlier column is detected, the algorithm takes
the median of all samples above Pthreshold as the estimate.

2) Stage 2 - Charging period detection: At this stage, the algo-
rithm searches for jumps in the household’s power consumption,
defined as follows:

I. There is a positive jump at sample n if: x[n]− x[n− n0] ≥
kjump · PEV

II. There is a negative jump at sample n if: x[n]−x[n−n0] ≤
−kjump · PEV

with PEV being the power of the EV, either as estimated in
Stage II-1 or known beforehand, n0 ≥ 1 a number of samples
and kjump ∈ (0, 1) a real number akin to a sensibility.

It is important to note that if positive jumps are shifted n0
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samples forward, and negative jumps are shifted back by the same
amount, the detected jumps, and the ones effectively seen in the
household’s consumption line up better.

After detecting these jumps, we define a charging period as
the set of samples between a positive jump and the next negative
jump, having previously filtered the detected jumps.

The filtering process consists of several steps: a) If there are
many successive positive jumps, the algorithm discards all but the
last one. As for successive negative jumps, only the first one is
kept. b) Considering the available data and the opinion of domain
experts, at present, and with the chargers and vehicles available
in Uruguay, the duration of a charging cycle does not exceed 24
hours in any case, a time we call Tmax. Therefore, if a charging
period exceeds this time, it is assumed that it has resulted from
two false alarms (one positive and one negative) and is entirely
discarded. c) If any sample in a charging period is less than kP ·
PEV with kP a real number ∈ (0, 1), it stops being considered
as part of the charging period.

3) Stage 3 - Total consumption estimation: In this last stage,
power consumption during the charging periods must be defined.
As is the case in [4], the following rule is used:

P̂EV [n] = min({PEV , Phouse[n]})

The algorithm predicts a rectangular consumption curve for the
EV while avoiding nonsensical situations where the EV would
have a power consumption higher than the aggregate household
power.

4) Parameters: In addition to the previously mentioned pa-
rameters, the algorithm’s behavior can be altered in other ways
with the following parameters: a) std values: Boolean. Adjust the
power estimate from stage 1 to the closest value of the standard
power ratings EVs can have in Uruguay. These standard values
are determined by the circuit breaker tripping current multiplied
by the grid’s voltage, which is 230V. The resulting values are
7360W, 6900W, 3680W, and 2300W. b) Pthreshold: Minimum
power that a sample must have to be considered when computing
the histogram from Stage 1.



III. ELECTRIC VEHICLE DATASETS

Three data sets were generated for use in the design and
evaluation of EV charge disaggregation algorithms, all with a
sample period of 15 minutes:

1) AggregateEV: A dataset consisting of remote measure-
ments of consumption of 70 residential clients who possess
an EV, with the measured period being around a year but
varying between clients. Among these, 6 correspond to
meters that measure EV chargers exclusively.

2) AggregateNoEV: A dataset consisting of remote measure-
ments of consumption of 377 residential clients who did
not have an EV.

3) SyntheticEV: A two-part synthetic dataset created through
the following process:

a) Identify the meters from AggregateEV whose power
consumption comes entirely from the EV. In total, 6
meters were identified, and all of their loads have an
instantaneous power of around 7kW.

b) Randomly divides the EV meters into two subsets of
three, A and B. Also, randomly assign half of the
non-EV households from AggregateNoEV to subset
A and the rest to subset B.

c) For each non-EV household, randomly select one of
the 3 EV meters from the same subset and apply a
time shift to it so that both time series overlap. Then
obtain a synthetic aggregate household with an EV by
adding both series.

Through this method, 377 synthetic household time series
were generated, with subset A having 188 and subset B
having 189. The reason for splitting the dataset in this
way is that one can be used as the training set for the
machine learning algorithm, while the other works as a
test set. This is better than randomly dividing the whole
dataset as it ensures that the same EV time series does not
appear both in training and testing, which could lead to
various models “memorizing” all possible EV consumption
curves and having good test performance but with poor
generalization to non-seen data.

IV. EXPERIMENTS

A. NILMEV performance on synthetic data.

The proposed algorithm was compared against several state-
of-the-art machine-learning-based disaggregators. The disaggre-
gators used were: InceptionTime[6], InceptionTimePlus[6], BiL-
STM [2], Denoising Autoencoder(DAE)[2], ResNet [7], Seq2Seq
[8].

Although the proposed algorithm has a structure based on
decision rules that do not follow the design of a traditional ML
model, it requires that the choice of parameters follow the same
principles as for any statistical learning model. Therefore, care

must be taken not to overfit the training data, so performance
must be evaluated in a test data set not seen in training for all
the compared models.

With this in mind, the following testing procedure was devised.
All disaggregation algorithms were trained on subset A of the
synthetic dataset. A random search was conducted to find the pro-
posed algorithm’s parameters that minimize the Mean Absolute
Error (MAE) on subset A. The synthetic households on subset
B were disaggregated with the models mentioned in the previous
two steps. The sample-wise power MAE was calculated for each
model. The results of both disaggregation instances are shown in
Table I and in Fig. 1. On the synthetic dataset, NILMEV appears
to have outperformed all neural-network-based approaches. There
are some caveats.

We observed that the trained NNs struggle to predict that no
power is being used during non-charging periods, yielding small
wattages even when no EV appears to be charging. This contrasts
with NILMEV, which always predicts zero power consumption
outside detected charging periods. Conversely, because of its

Fig. 1: Disaggregation of a synthetic household with NILMEV.
The algorithm shows an impressive performance at detecting
charging periods while still providing a decent estimate of the
power demand during them.

relative simplicity, NILMEV provides only a rough estimate of
power use while the EV is charging. In contrast, the NN-based
approaches tend to perform better during these periods.

This means that the MAE depends on the proportion of the
time series in which the EV charges. Therefore, NILMEV would
be more performant in cases where the EV is charged sparingly
(e.g., a charger located in a residential household). At the same
time, NNs would work best with heavy EV use. The energy use by
the synthetic households was calculated from the disaggregation
yielded by the algorithm. The disaggregation errors are shown in
Fig. 2. It is important to remember that, in reality, EV charging
powers can vary widely, so it should not be assumed that the



NILMEV InceptionTime InceptionTimePlus BiLSTM DAE ResNet Seq2Seq
Trained on Subset A 5.54 30.9 30.6 21.9 30.2 16.4 31.0
Trained on Subset B 24.5 33.1 30.0 28.2 92.3 31.4 61.1

Average 15.0 32.0 30.2 25.0 61.3 23.9 46.0

TABLE I: Model performance evaluations. In the first row, the MAE over Subset B in models trained on Subset A is reported. In
the second row, the sets are interchanged. The last row shows the mean performance over both sets.

Fig. 2: Disaggregation error for households from subset A, using
the best parameters found for subset B. A positive error means
that EV consumption is being overestimated.

parameters found for these particular vehicles are the optimal
choice for every EV.

B. NILMEV performance on a real dataset.

Although the penetration of EVs in Uruguay is still in its early
stages, there are policies put in place by the national energy
company (UTE) to stimulate the adoption and use of EVs. These
policies include service agreements that offer discounted rates
for charging during off-peak hours. As there is no sub-metering
available, which would allow EV energy use to be measured
separately from the rest of the household, the energy consumption
of the EV must be estimated based on historical consumption data
and the rate plan chosen by the customer.

The availability of the AggregateEV dataset allows for a
comparative statistical analysis of the proposed disaggregation
algorithm’s results against the currently used criteria based on
time slots and changes in historical consumption. It also allows
us to analyze whether there is bias or differences between the
results depending on the charging plan chosen by the client.

The disaggregation algorithm was run on real data of service
points (SPs) that have EVs (AggregateEV dataset from sec-
tion III). Disaggregation was also calculated using criteria that
consider different scenarios based on time slots and historical
measurements, and the different consumption values obtained
were compared. Only scenarios with two or three-slot regimes

were compared, as EV consumption is not discounted if the
customer has a flat rate.

The criteria are as follows:
• Two slot regime: 40% of off-peak consumption is consid-

ered EV consumption.
• Three slot regime: 90% of consumption during the lowest-

demand period is considered EV consumption.
These criteria are the ones currently used by the electrical

utility company in Uruguay to offer discount rates for EV
charging. 1 . The user chooses “Peak hours” from any of the
three periods of 4 consecutive hours between 17:00 and 23:00.
Due to this, the disaggregation for double slot regimes is separated
into three groups. The utility company fixes the lowest-demand
hours as the period from 0:00 to 7:00. Fig. 3 shows the results
of applying the NILMEV disaggregation algorithm with the best
parameters for Subset A. The algorithm shows an excellent ability
to locate EV activity and precisely detect the absence of EV
charging. In Fig. 4, the disaggregation of NILMEV is compared

Fig. 3: Time series of a real Service Point (SP) with its disaggre-
gation by NILMEV, using Subset A’s best parameters. Note how
the algorithm can identify extended periods where the EV does
not appear to be loaded.
with the energy estimated under the different time slot regimes.
It can be seen that the energy use allocated by current criteria
is much greater than the NILMEV disaggregation algorithm.
This is most likely because current criteria do not detect the
absence of an EV and therefore function in practice as an extra

1https://portal.ute.com.uy/clientes/soluciones-para-el-hogar/planes-hogar/
plan-inteligente

https://portal.ute.com.uy/clientes/soluciones-para-el-hogar/planes-hogar/plan-inteligente
https://portal.ute.com.uy/clientes/soluciones-para-el-hogar/planes-hogar/plan-inteligente


discount for all off-peak consumption instead of as an incentive
for using a particular appliance. As an example, Fig. 4 shows
that NILMEV does not disaggregate any energy use, which is
consistent with the user’s consumption pattern in that month.
However, the estimates made with the time slot criteria do not
reflect that. Fig. 5 shows the disaggregation for another user who

Fig. 4: Disaggregated energy per month for SP in Fig. 3, with
NILMEV and current UTE criteria. We highlight the algorithm’s
ability to detect periods in which the EV does not appear to be
charged.

has a three-slot regime in place. The user charges their vehicle
in the lowest-demand hours to take advantage of lower prices.
However, the jump in power consumption, along with the shape
of the nightly consumption curve, suggests that they may be
using other high-powered appliances in the same period. As Fig.
5 shows, the time-slot-based disaggregation estimates a higher
energy use, leading us to believe that it may be counting other
appliances used during the lowest-demand period as part of the
EV.

V. CONCLUSIONS

The article shows that it is possible to accurately disaggregate
EV power consumption with a simple algorithm suitable for
situations with little to no sub-metered data. We show that the
proposed algorithm can achieve performance levels similar to
state-of-the-art disaggregation algorithms based on deep neural
networks when trained and evaluated on a synthetic database
generated by the research team. The ability to detect charging
activity is highlighted, particularly the accuracy with which the
absence of activity is detected. The evaluation of the results in the
real dataset shows a similar behavior regarding detecting charging
periods. The comparative analysis with currently used criteria
based on historical data and discounted rate plans confirms the
relevance of providing methods that estimate EV consumption in
a disaggregated manner.

Fig. 5: Disaggregated energy per month for a user with a three-
slot regime, using NILMEV and current UTE criteria. Three-slot
disaggregation consistently overestimates EV energy use.
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