Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/35612
Cómo citar
Título: | Deep reinforcement learning and graph neural networks for efficient resource allocation in 5G networks |
Autor: | Randall, Martín Belzarena, Pablo Larroca, Federico Casas, Pedro |
Tipo: | Preprint |
Palabras clave: | Deep learning, Base stations, Q-learning, 5G mobile communication, Wireless networks, Benchmark testing, Graph neural networks, User Association, Mobile Networks, Reinforcement Learning |
Fecha de publicación: | 2022 |
Resumen: | The increased sophistication of mobile networks such as 5G and beyond, and the plethora of devices and novel use cases to be supported by these networks, make of the already complex problem of resource allocation in wireless networks a paramount challenge. We address the specific problem of user association, a largely explored yet open resource allocation problem in wireless systems. We introduce GROWS, a deep reinforcement learning (DRL) driven approach to efficiently assign mobile users to base stations, which combines a well-known extension of Deep Q Networks (DQNs) with Graph Neural Networks (GNNs) to better model the function of expected rewards. We show how GROWS can learn a user association policy which improves over currently applied assignation heuristics, as well as compared against more traditional Q-learning approaches, improving utility by more than 10%, while reducing user rejections up to 20%. |
Descripción: | Presentado y publicado en 2022 IEEE Latin-American Conference on Communications (LATINCOM), Rio de Janeiro, Brazil, 30 nov-2 dec. 2022, pp. 1-6. |
Financiadores: | Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700), así como por el proyecto Austrian FFG ICT-of-the-Future DynAISEC (Adaptive AI/ML for Dynamic Cybersecurity Systems). Beca doctorado ANII |
Citación: | Randall, M., Belzarena, P., Larroca, F. y otros. Deep reinforcement learning and graph neural networks for efficient resource allocation in 5G networks. [Preprint]. Publicado en: 2022 IEEE Latin-American Conference on Communications (LATINCOM), Rio de Janeiro, Brazil, 30 nov-2 dec. 2022. pp. 1-6. DOI: 10.1109/LATINCOM56090.2022.10000511 |
Departamento académico: | Telecomunicaciones |
Grupo de investigación: | Análisis de Redes, Tráfico y Estadísticas de Servicios |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RBLC22a.pdf | Preprint | 402 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons