
Deep Reinforcement Learning and Graph Neural Networks for
Efficient Resource Allocation in 5G Networks

Martı́n Randall∗†, Pablo Belzarena∗, Federico Larroca∗, Pedro Casas†
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Abstract—The increased sophistication of mobile networks
such as 5G and beyond, and the plethora of devices and novel
use cases to be supported by these networks, make of the already
complex problem of resource allocation in wireless networks a
paramount challenge. We address the specific problem of user as-
sociation, a largely explored yet open resource allocation problem
in wireless systems. We introduce GROWS, a deep reinforcement
learning (DRL) driven approach to efficiently assign mobile users
to base stations, which combines a well-known extension of Deep
Q Networks (DQNs) with Graph Neural Networks (GNNs) to
better model the function of expected rewards. We show how
GROWS can learn a user association policy which improves
over currently applied assignation heuristics, as well as compared
against more traditional Q-learning approaches, improving utility
by more than 10%, while reducing user rejections up to 20%.

Index Terms—User Association; Mobile Networks; Reinforce-
ment Learning; Graph Neural Networks

I. INTRODUCTION

The problem of resource allocation, as in finding a resource
distribution that satisfies some chosen metric can be thought
of as how to do more with less?. Specially in engineering,
optimization of resources to achieve a given purpose is a
prominent area of studies. In wireless systems, next gener-
ation mobile networks such as 5G and beyond, are meant to
accommodate to the rapid growth of connected devices (e.g.,
IoT), coupled with a huge surge of data consumption (e.g.,
high definition video streaming, etc). An important enhance-
ment to next generation mobile networks is the possibility of
implementing smart, adaptable resource allocation approaches.
This is promoted from the 5G and beyond standards, and
accelerated by the astonishing results that machine learning
has achieved as of late – albeit mainly in other fields, and much
work has been devoted to bringing the artificial intelligence
and the wireless communication worlds together. All of this
leads to a renewed interest on research for smart adaptable
user association policies.

Among novel deep learning techniques, graph neural net-
works (GNNs) have gained much attention, due to their
ability to exploit complex data structures and to generalize
to unseen scenarios, and they seem particularly fit to dynamic
applications such as user association. They have been deemed
particularly suited to networking problems, due to the wide
use of graphs in the domain and their generalization capability.
Furthermore, they are amenable to a distributed implementa-
tion, a quality of paramount importance in several situations.

In this paper we focus on the problem of User Asso-
ciation (UA): to which connectivity provider (e.g., base
station) should a user get connected to, to maximize a
global system utility function, typically throughput related.
The optimal policy is usually intractable, since this kind of
resource allocation problems is NP-hard, and the number of
possible states grows too large to do a search over all possible
decisions. This makes of user association an open problem,
and although simple heuristics yield good enough results for
simple scenarios (e.g., low congestion), there is much to gain
from combining state of the art artificial intelligence with
simple and robust system models. The UA problem may be
stated as a sequential decision-making problem; therefore,
we consider it from a Deep Reinforcement Learning (DRL)
perspective, where the value function is approximated by a
GNN. Our work constitutes, to the extent of our knowledge,
the first application of DRL and GNNs to user association
on mobile networks. The main contributions of this paper are
summarized as follows:
(1) User Association Modeling: GROWS tackles the mod-
elling of the UA problem using graph representations and a
reinforcement learning framework. We propose a decentralized
decision making framework in which agents are able to serve
users through a general enough system representation that
allows the algorithm to function in different use cases.
(2) Validation Results in Simulated 5G Networks: we
provide a series of results validating GROWS in simulated 5G-
network scenarios. Benchmarking results show that GROWS
reduces user rejections up to 20%, while achieving an in-
creased utility of more than 10%, as compared to classical
RL-based algorithms and currently applied UA heuristics.
(3) GROWS Code and Reproducibility: for the sake
of reproducibility and as an additional contribution of
this paper, we openly release the current implementation
of GROWS to the community. The code is available at
https://gitlab.fing.edu.uy/mrandall/grows.

The remainder of the paper is organized as follows. Sec. II
overviews related work on user association and the applica-
tion of GNNs to resource allocation problems. The GROWS
algorithm is presented in Sec. III, including the system model,
the reinforcement learning formulation, and the GNN model.
Validation and benchmarking results are presented in Sec. IV.
The paper ends with concluding remarks and future lines of
work in Sec. V.



II. RELATED WORK

A. Graph Neural Networks

Let us first briefly present GNNs. In a nutshell, it consists
of a cascade of layers, each of which applies a graph filter
followed by an activation function. Consider that each node in
the graph has an associated vector xi ∈ Rd (for i = 1, . . . , N ),
which may regarded as the input features. Making the analogy
to discrete-time convolution, a first-order convolutional layer
for a GNN may be obtained as follows [1]:

x′
i = σ

ΘT
∑

j∈Ni∪{i}

Sj,ixj

 , (1)

where x′
i ∈ Rd′

is the output of the layer, σ(·) is a point-wise
non-linearity (e.g., the ReLU function), Θ ∈ Rd×d′

is the
learnable parameter of this layer, Ni is the set of neighbors
of node i, and Si,j is the i, j entry of matrix S ∈ RN×N ,
the so-called Graph Shift Operator (GSO). This is a matrix
representation of the graph, which should respect its sparsity
(i.e. Si,j ̸= 0 whenever there is an edge between nodes i and
j). The adjacency matrix of the graph, its Laplacian or their
normalized versions are all valid GSOs.

Note that in (1) each node needs to linearly combine the
vectors of its neighbors only. As we concatenate K such
layers, the final vector representation of node i (i.e. the output
of the GNN) will depend on its neighbors up to K hops away.
This observation implies that a GNN may be implemented in
a fully-distributed way, as long as an edge in the graph means
that the corresponding pair of nodes can communicate.

We may be more general and build higher-order filters. Let
us stack all nodes’ vectors xi into matrix X ∈ RN×d, which is
called a graph signal. The matrix product SX = Y results in
another graph signal, corresponding to the first-order convo-
lution we used in (1) (albeit without parameter Θ, which we
will include shortly). By writing SKX = S(SK−1X) we may
see that this way we aggregate the information K hops away.
Again, although it requires K rounds of information exchange,
this operation may be performed without intervention of a
central entity.

Finally, a general graph convolution is defined simply as
a weighted sum of these K signals (i.e.

∑
k S

kXhk, where
scalars hk are the taps of the filter). In this context, parameter
Θ in (1) is interpreted as a filter bank. That is to say,
by considering a d × d′ matrix Hk instead of the scalar
taps, a single-layer GNN (or graph perceptron) is obtained
by applying the pointwise non-linear function σ(·) to this
convolution [2] [3]:

X′ = σ

(
K−1∑
k=0

SkXHk

)
, (2)

whereas a deep GNN is constructed by concatenating several
perceptrons.

B. GNN and Reinforcement Learning for Resource Allocation

Although GNN represents a recent paradigm [4], [5], it
has already proved its usefulness to address diverse resource
allocation problems [6]–[8]. For complete reviews of Graph
Neural Networks methods and applications we refer the reader
to [9]–[11]. Examples of GNN applied to solving NP-hard or
resource allocation problems include combinatorial optimiza-
tion [12], measurements [13], and network virtualization [14].
The authors of [15] use a combination of fine-tuned GNN and
RL to organize channel capacities on optical networks.

Closer to wireless systems, [6], [7], [16]–[19] propose the
use of GNNs to find the optimal policy for a power allocation
wireless system problem. An interesting work addressing
radio resource management can be found in [20]. In [18],
authors use GNNs to build a digital twin for network slicing.
GROWS differs in several aspects from previous work: instead
of optimizing an energy constrained problem, we focus on
a throughput related system’s utility; we establish a graph
independent of the interference, which is closer to the expected
5G scenarios and smart policies avoiding interference; last, we
build a general enough algorithm capable of adaptable decision
making to different use cases.

C. User Association in Mobile Networks

There is a number of interesting surveys tackling the user
association problem for 5G and beyond mobile networks [21],
[22]. User association for millimeter wave communications has
been addressed already a decade ago [23], [24], using classical
optimization to find close to optimal heuristics (although mak-
ing several assumptions in order to have 0-gap dual problems).
In [21], authors analyze user association with focus on four
major changing aspects due to 5G implementation: massive
MIMO (mMIMO), heterogeneous networks (HetNet), millime-
ter waves (mmWave) and energy harvesting. Most work focus
on one of these main changes, and choose one or more metrics
for comparison with existing solutions [23], [25]–[28]. Most
papers tackle the macro cell/micro cell relationship (e.g., back-
haul saturation and/or load balancing) [11], [25], [27], [28] or
handover schemes [29], which are are closely related to our
target, but are not our main focus.

An interesting proposal arises from [30], in which authors
propose a DRL solution to jointly optimize user association
and resource allocation, but their algorithm needs to centralize
and distribute information to every user through message pass-
ing. Authors only compare their solutions to the most common
baseline (e.g., maximum received signal power, MRSP) in
a few scenarios, achieving a lower utility than MRSP. The
closest work to our proposal is an approach to user asso-
ciation from a multi-agent reinforcement learning viewpoint
[31]. Authors propose an algorithm centralized in training but
distributed on execution, which takes into account message
passing between neighbors and delay on this information
exchange. Yet, they only optimize two decisions for each
base station: which user to serve at each time-step, and with
what power, using an arbitrary user association policy as the
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Figure 1. We consider the system formed by the k base stations with better
SNR to the arrived user (in the figure k = 3). The system model allows this
problem to be tackled through local decisions inside a larger system, limiting
the complexity of the algorithms and improving scalability.

maximum reference signal received power – close to a max-
SNIR. To achieve scalability, they limit the user observation to
a constant number – whilst we integrate the users state in our
observation, and the base stations are only allowed to serve
one of the top-three users.

III. THE GROWS ALGORITHM

A. System Model

Let us consider a set of N base stations. Each base station
has a limited set of frequency resources, following the 5G
taxonomy we will refer to them as resource blocks (RB). We
assume that base stations have an internal assignation policy
they follow for their associated users, for instance to distribute
equally among connected users the available resources.

As many decision problems, time will be considered slotted.
At each time interval t a user may or may not arrive,
following some probability distribution. As shown in Fig. 1,
the user association problem can be split to consider only local
decisions, enabling scaling by limiting the graph complexity
and the action/state size. In the event of an arrival, one of the k
base stations with strongest SNIR with the user and available
resources has to associate itself with the newcomer user.

As a reinforcement learning formulation is desired [32], we
need to define precisely the tuple formed by (s, a, T, r, γ). We
refer to Fig. 2 for a clearer visualization.

The system’s state s is defined as the aggregation of
the base station’s states and the user’s state. For each base
station, the state is composed of a representation of the present
system’s state and the new user’s characteristics. Defining
the base station’s state are the number of users associated
to it and the mean utility achieved so far. Defining the new
user characteristics are: the RSSI with the corresponding base
stations and a certain demand to be satisfied.

The action a will be to select one of the possible base
stations. Please note that not every time step involves actions:
they may or may not occur. In order to have a well defined
Markov process, we include the decision-making in the state,
by setting the demand to 0 for the time steps on which no user
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Figure 2. System model. We consider at most one arrival at each time-step.
The combination of past decisions and the present arrival constitutes the state
of the system. The choice of which base station associates with the currently
arrived user is the action. After executing an action, a new state is observed
and a reward is obtained.

arrives. In this case, only one course of action is available:
when no users arrive there is no action to be taken, only
updating the system’s state.

Transitions T will then occur as depicted in figure 2: the
base station’s descriptors have to be updated to include: the
action effect (+1 on the number of users associated, new
mean utility), and the time effect (-1 on the number of users
associated if a user’s demand has been satisfied). Each time
step will update the ”new user characteristics” in the event of
a new arrival. Note that transitions are deterministic over the
base station’s features given the action a and the state s, but
stochastic for the new user features.

Finally, the reward r is defined as the instantaneous utility
of executing an action for a given state. In our use cases,
we will use as utility/reward the log-sum of the throughput
over the users, r =

∑
N

∑
i log(1 + th(ui,n)), where ui,n

represents the user i associated with base station n. This
promotes fairness in the resource distribution, and is widely
used in literature [33].

In RL formulations, the discount factor γ is defined in
order to estimate the expected discounted cumulative reward,
which is the value algorithms will try to maximize:

Rt = Σ∞
t γtr(t)

The expected discounted cumulative reward is optimized by
updating a policy (π) through one of Bellman’s equations. In
our case we consider the action-value function for policy π,
defined as [32]:

qπ(s, a) = Eπ

[
Σ∞

k=0γ
kRt+k+1|St = s,At = a

]
and use the update rule given by the optimality equation for

the state-action value function:

qπ(s, a) = r + γqπ(s′, π(s′))

For the graph representation, we consider at each decision
time a graph formed by the base stations considering the
new arrived user. Edges between nodes depict connections
between base stations. All base stations are able to interact
with each other in the considered 5G scenario, forming a fully
connected graph. As depicted in Fig. 3, the state of each node
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Figure 3. Graph representation of the system. Nodes represent base stations, and edges represent connections between these base stations.

is given by the state of the base station it depicts and the user’s
characteristics with respect to that base station.

B. Algorithm Design

GROWS algorithm is based on the classic Double DQN
reinforcement learning algorithm [34], and integration with
the GNN is inspired on previous work [12], [15]. The goal of
the GNN is to learn how to best approximate the q-function,
an estimation of the value-action function for the RL problem.
The actor-critic role in reinforcement learning is to stabilize
convergence of the algorithm. It is important to notice that
training and execution are done separately: once the GNN is
trained, prediction of the q-function according to the state and
possible actions can be done instantly.

For the GNN model, we use the LocalGNN implementation
proposed in [35], corresponding to an implementation of the
popular Graph Convolutional Network (GCN), introduced in
II-A. An important characteristic of the GCN is that in-
formation aggregation is done locally for each node – and
extended to the K neighboring hops, which means that the
GCN output for each node can run locally, enabling scaling
for the proposed algorithm.

A final merge of the reward prediction for choosing which
base station serves the user has to be made. This can be either
decentralized (by exchanges between the base stations of their
expected rewards), or centralized (if a single entity receives the
states updates and calculates the maximum expected reward
for the possible actions).

IV. GROWS EVALUATION AND RESULTS

To evaluate GROWS behavior and performance in a mobile
network use case, we use synthetic scenarios simulating 5G
networks. As explained before, the goal is to learn a UA
policy which maximizes the log-sum of the users’ throughput,
potentially improving the overall system utility as compared
to certain baseline policy. As stated, the optimal policy is

intractable: the problem is NP-hard and the number of states
grows too fast to run a search over all possible decisions.
For this reason, UA in current mobile networks is generally
done through a simple heuristic, selecting the BS with the
highest signal strength – we refer to this policy as an argmax
policy, and we would consider it as the baseline. Even if
simple, this strategy achieves good performance, and is usually
considered as baseline in the field [11], [23], [24], [27], [28],
[30], [36], [37]. We compare GROWS against this simple
policy, representing the currently followed strategy. As we
consider a small scenario, it is possible to address the UA
problem through a pure RL approach; therefore, we addition-
ally compare GROWS against a Q-learning approach. In this
sense, Q-learning tends to find the optimal policy if states and
actions are visited enough, allowing to compare GROWS to
an algorithm close to the optimal. In a more complex setting,
the Q-learning would be unfeasible due to the large number of
states, but a DRL approach as the one followed by GROWS
is still viable.

We simulate a 5G network where base stations are inter-
connected through a back-haul. The scenario consists of three
BSs, one of them having a slightly better RSSI. At each step t,
users arrive with a probability p = [0.5, 0.7, 1]. Each user has a
discrete set of possible demands to be satisfied, and a discrete
set of possible RSSI values with the three BSs, randomly
generated. Episodes are composed of T = 40 time steps,
and we use an epsilon-greedy exploration/exploitation policy,
exploring on the first 40, 000 episodes, and exploiting on the
last 10, 000 episodes, following an exponential decay. Hyper-
parameters for the LocalGNN model are calibrated through
grid search, resulting in the following values: a learning
rate of 1e−4, a batch size of 32, and a simple architecture
composed of 2 convolutional layers with filters of size 4 and
2 respectively, followed by a readout layer. The point-wise
non linear function used is the hyperbolic tangent, and we
include information from a 1-hop neighborhood. To avoid



mean utility per episode mean user rejections per episode
p = 0.5 p = 0.7 p = 1 p = 0.5 p = 0.7 p = 1

D Q B GROWS Q B GROWS Q B GROWS Q B GROWS Q B GROWS Q B GROWS
6 2.67 2.64 2.70 2.94 2.86 2.92 3.39 3.15 3.24 0.01 0.01 0.01 0.25 0.26 0.34 2.86 3.12 2.65
8 2.81 2.73 2.87 3.07 2.93 3.08 3.50 3.2 3.42 0.08 0.09 0.09 0.99 1.07 1.10 5.59 5.63 5.35
10 2.86 2.76 2.80 3.15 2.96 3.16 3.56 3.21 3.54 0.24 0.26 0.21 1.93 2.00 1.77 7.04 7.32 7.03
12 2.92 2.77 2.95 3.19 2.96 3.23 3.57 3.21 3.55 0.45 0.52 0.48 2.75 2.86 2.66 8.34 8.38 8.17
14 2.92 2.78 2.99 3.20 2.95 3.20 3.57 3.21 3.52 0.69 0.83 0.63 3.44 3.62 3.38 9.15 9.08 9.13

Table I
(LEFT) MEAN UTILITY AND (RIGHT) MEAN USER REJECTIONS FOR DIFFERENT EXPERIMENTS, VARYING AVERAGE DEMAND (D) AND ARRIVAL RATE (p).
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Figure 4. Already in a small mobile network topology (three BSs) with a
simple traffic demand, GROWS outperforms current UA policies. The more
complex the scenario, the highest the benefits we expect from GROWS as
compared to the baseline argmax approach.

vanishing/exploding gradient issues, GNN model input are
normalised. The policy network is updated every 20 steps, and
the target network is updated every 200 steps, using a replay
buffer of 1e5 samples. As discount factor, we take γ = 0.5.
We take a learning rate of 0.5 for the Q-learning algorithm.
Finally, initialization for the action-value function is set to 0
and policies are set to random, for both RL algorithms.

Fig. 4 reports the obtained results in terms of utility for one
of the experiments (p = 0.5 and average demand D = 14),
where the cumulative reward is averaged over 300 episodes.
For a better visualization and interpretation of results, utility
is normalized to a random UA policy, where users are
assigned to BSs in a random manner; this means that a value
of 1 on the normalized utility is equivalent to a random UA
policy. Results are encouraging: this version of GROWS
learns a proper policy, outperforming the argmax heuristic by
more than 10%. During the first episodes, exploration is still
dominant for both GROWS and Q-learning, and the greedy
exploration/exploitation policy is strongly noticeable. After
1,000 episodes, GROWS learns a better UA policy with the
same exploration as Q-learning, suggesting it was able to
better approximate the Q-value function.

An important and desirable characteristic is the ability to
handle more users/traffic. To analyze how GROWS behaves
in the event of user/traffic variations, we simulate different
network-load scenarios, varying the average demand (D) and
the arrival rate (p) – p represents the probability of a user
arriving on a time-slot. We assess performance in terms of the
mean utility and the mean number of user rejections realized
for the different experiments, comparing the three different
approaches: baseline (B), Q-learning (Q), and GROWS.
Results are summarized in Tab. I. For the small topology
and experimental settings, the Q-learning policy is able to
explore the system states enough to be close to optimal,
but the GROWS algorithm still achieves better results for
many scenarios, meaning the GCN was able to learn a good
approximation of the Q value function. When demand is
low, there are very few rejections, and all algorithms achieve
similar results. However, as mean demand increases, GROWS
is able to increase the gained utility over the baseline, proving
its ability to handle traffic over more stressed situations.
Regarding both mean utility and user rejection, either GROWS
or the Q-learning fare better in almost all scenarios. In some
cases, GROWS is able to reject a 20% less of users.

V. CONCLUSIONS

We have presented our work in the field of user associ-
ation, an open problem with renewed interest to fulfill next
generation mobile network requirements. We proposed a DRL
formulation of the UA problem, using a GNN to estimate
the Q-value function, giving birth to the GROWS algorithm:
a decentralized and scalable solution for UA on wireless
systems. We presented benchmarking results for several syn-
thetic scenarios simulating mobile networks, evidencing the
advantages of GROWS as compared to the state of the art
in the practice of UA, realizing a higher system utility –
up by 10%, and a lower user rejection – down by 20%.
Generalization to unseen scenarios and traffic variations, as
well as the integration of user mobility are yet to be analyzed.
To fully exploit GROWS advantages, more complex and
realistic scenarios would be explored as part of future work,
including experiments involving different wireless systems
(e.g., WIFI, Flying Ad-Hoc Networks) and different situations
(e.g., flashcrowds, mobility).
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