Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/35269
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Randall, Martín | - |
dc.contributor.author | Belzarena, Pablo | - |
dc.contributor.author | Larroca, Federico | - |
dc.contributor.author | Casas, Pedro | - |
dc.date.accessioned | 2022-12-15T12:39:28Z | - |
dc.date.available | 2022-12-15T12:39:28Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Randall, M., Belzarena, P., Larroca, F. y otros. GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks [Preprint]. Publicado en: GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec., pp. 24-29. DOI: 10.1145/3565473.3569189. ISBN:978-1-4503-9933-3. | es |
dc.identifier.uri | https://dl.acm.org/doi/10.1145/3565473.3569189 | - |
dc.identifier.uri | https://dl.acm.org/doi/proceedings/10.1145/3565473 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/35269 | - |
dc.description | Presentado y publicado en GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec. 2022, pp. 24-29. | es |
dc.description.abstract | Wireless networks have progressed exponentially over the last decade, and modern wireless networking is today a complex to manage tangle, serving an ever-growing number of end-devices through a plethora of technologies. The broad range of use cases supported by wireless networking requires the conception of smarter resource allocation approaches, which make the most of the scarce wireless resources. We address the problem of user association (UA) in wireless systems. We consider a particularly challenging setup for UA, represented by modern ad-hoc networks such as FANETS, where connectivity is provided by a group of unmanned aerial vehicles (UAVs). We introduce GROWS, a Deep Reinforcement Learning (DRL) driven approach to efficiently connect wireless users to the network, leveraging Graph Neural Networks (GNNs) to better model the function of expected rewards. While GROWS is not tied to any specific wireless technology, the decentralized nature of FANETS and the lack of a pre-existing infrastructure makes a perfect case study. We show that GROWS learns UA policies for FANETS which largely outperform currently used association heuristics, realizing up to 20% higher throughput utility while reducing user rejection by more than 90%, and that these policies are robust to concept drifts in the expected load of traffic, maintaining performance improvements for previously unseen traffic loads. | es |
dc.description.sponsorship | Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700), así como por el proyecto Austrian FFG ICT-of-the-Future DynAISEC (Adaptive AI/ML for Dynamic Cybersecurity Systems). | es |
dc.description.sponsorship | Beca doctorado ANII | es |
dc.format.extent | 6 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | User Association | es |
dc.subject | Wireless Networks | es |
dc.subject | FANETS | es |
dc.subject | Graph Neural Networks | es |
dc.subject | Deep Reinforcement Learning | es |
dc.subject | Computing methodologies | es |
dc.subject | Machine learning | es |
dc.subject | Learning paradigms | es |
dc.subject | Reinforcement learning | es |
dc.subject | Networks | es |
dc.subject | Network types | es |
dc.subject | Wireless access networks | es |
dc.title | GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Belzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Casas Pedro, Austrian Institute of Technology Vienna, Austria | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Telecomunicaciones | - |
udelar.investigation.group | Análisis de Redes, Tráfico y Estadísticas de Servicios | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RBLC22.pdf | Preprint | 390,33 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons