
GROWS – Improving Decentralized Resource Allocation in
Wireless Networks through Graph Neural Networks

Martín Randall
Facultad de Ingeniería, Universidad de la República

Austrian Institute of Technology

Uruguay/Austria

mrandall@ing.edu.uy

Pablo Belzarena
Facultad de Ingeniería, Universidad de la República

Uruguay

belza@ing.edu.uy

Federico Larroca
Facultad de Ingeniería, Universidad de la República

Uruguay

larroca@ing.edu.uy

Pedro Casas
Austrian Institute of Technology

Austria

pedro.casas@ait.ac.at

ABSTRACT

Wireless networks have progressed exponentially over the last

decade, and modern wireless networking is today a complex to man-

age tangle, serving an ever-growing number of end-devices through

a plethora of technologies. The broad range of use cases supported

by wireless networking requires the conception of smarter resource

allocation approaches, which make the most of the scarce wire-

less resources. We address the problem of user association (UA)

in wireless systems. We consider a particularly challenging setup

for UA, represented by modern ad-hoc networks such as FANETS,

where connectivity is provided by a group of unmanned aerial

vehicles (UAVs). We introduce GROWS, a Deep Reinforcement

Learning (DRL) driven approach to eiciently connect wireless

users to the network, leveraging Graph Neural Networks (GNNs)

to better model the function of expected rewards. While GROWS

is not tied to any speciic wireless technology, the decentralized na-

ture of FANETS and the lack of a pre-existing infrastructure makes

a perfect case study. We show that GROWS learns UA policies

for FANETS which largely outperform currently used association

heuristics, realizing up to 20% higher throughput utility while re-

ducing user rejection by more than 90%, and that these policies are

robust to concept drifts in the expected load of traic, maintaining

performance improvements for previously unseen traic loads.

CCS CONCEPTS

•Networks→Wireless access networks; •Computingmethod-

ologies → Reinforcement learning.

KEYWORDS

User Association; Wireless Networks; FANETS; Graph Neural Net-

works; Deep Reinforcement Learning

1 INTRODUCTION

The exponential growth of wireless connectivity in the past decades

has led to vast research in the general problem of Resource Alloca-

tion (RA) in wireless networks. Next Generation Wireless (NGW)

networks would need to accommodate to the ever-growing number

, ,

2022.

of connected devices (e.g., IoT) and the surge of novel, resource-

demanding applications, motivating a renewed interest in inding

better, more eicient User Association (UA) policies [10, 19]. While

the focus of NGW networking research is mainly on mobile 5G and

beyond networks, the surge of Unmanned Aerial Vehicles (UAV) in

a broad variety of applications has brought back their usage as a

complementary or substitute ad-hoc communication infrastructure,

in the form of the so-called Flying Ad-hoc NETworks (FANETs) [18].

FANETs ofer advanced features such as high mobility, fast deploy-

ment, self-coniguration, low cost, scalability, and others, which

make them a potential extension to the 5G network itself, spe-

cially to handle emergency situations and unplanned deployments.

Within this context, the UA problem consists of the conception

of association policies indicating the connectivity provider ś e.g.,

UAVs, base stations ś an incoming user should connect to so as

to maximize a global system utility function, typically throughput

related. The optimal association policy is usually intractable, and

although simple heuristics yield good results for simple, low traic

scenarios, they are far from optimal under congestion.

The UA problem can be posed as a sequential decision-making

one, hence we consider it from a Deep Reinforcement Learning

(DRL) perspective. The RL paradigm is particularly suited for de-

cision making problems, where an agent wants to ind an optimal

policy regarding some system reward. As the problem is NP-hard

and the number of states quickly grows to become infeasible, we

approximate the value function by a Graph Neural Network (GNN).

Graphs portray a very expressive representation for systems com-

posed of connected nodes, which are typical in networking. GNNs

combine the expressiveness of graph representations with the learn-

ing ability of neural networks to advance learning-driven tasks. Due

to their ability to exploit data structure and to generalize to unseen

scenarios, GNNs have gained much attention in several ields (e.g.,

chemistry, natural language processing, networking). A particu-

larly interesting property of GNNs for the proposed UA problem

is their distributed nature: GNNs are amenable to a distributed

implementation, turning them suitable for a variety of applications

where central nodes cannot be relied on. For a FANET deployment,

the distributed nature of GNNs is key to the algorithm’s imple-

mentation. Indeed, the biggest advantage of graph-based learning

for RA and UA tasks comes in scenarios where no central entity

, , Randall et al.

may be assumed to exist, and base stations can only exchange in-

formation with their neighbors. Actually, all deployments where

the infrastructure is provided by an ad-hoc network fall into this

category. The main contribution of our work is on the modelling

of the UA problem using graph representations and a reinforce-

ment learning framework. We propose GROWS, a decentralized

decision making framework in which agents are able to serve users

through a general enough system-representation, which enables

learning UA policies that properly perform in diferent use cases.

In this paper we provide a series of synthetic results on UA for

FANETS using GROWS, evidencing that smart and adaptable UA

policies can perform signiicantly better than classical heuristics. In

particular, we show that GROWS can serve up to 50% more users,

achieving an increase on utility of over 20%. We additionally con-

irm the robustness and adaptive capabilities of GROWS, evaluating

its functioning under varying traic load.

2 GNN CONTEXT & RELATED WORK

2.1 Graph Neural Networks 101

GNNs are pretty novel as learning model. In a nutshell, a GNN

consists of a cascade of layers, each of which applies a graph ilter

followed by an activation function. Consider that each node in the

graph has an associated feature vector x� ∈ R
� (for � = 1, . . . , �),

which may regarded as the input features. Making the analogy to

discrete-time convolution, a irst-order convolutional layer for a

GNN may be obtained as follows [16]:

x
′
� = �

©
«
Θ
�

︁
� ∈N�∪{� }

� �,�x�
ª®¬
, (1)

where x
′
� ∈ R�

′
is the output of the layer, � (·) is a point-wise

non-linearity (e.g. the ReLU function), Θ ∈ R�×�
′
is the learnable

parameter of this layer, N� is the set of neighbors of node � , and

��, � is the �, � entry of matrix S ∈ R�×� , the so-called Graph Shift

Operator (GSO). This is a matrix representation of the graph, which

should respect its sparsity ś i.e., ��, � ≠ 0 whenever there is an

edge between nodes � and � . The adjacency matrix of the graph, its

Laplacian, or their normalized versions are all valid GSOs.

Note that in (1), each node needs to linearly combine the vectors

of its neighbors only. As we concatenate � such layers, the output

of the GNN, which consists of the inal vector representation of

node � or its node embedding, depends on its neighbors up to� hops

away. This observation implies that a GNN may be implemented in

a fully-distributed way, as long as an edge in the graph means that

the corresponding pair of nodes can communicate.

We may be more general and build higher-order ilters. Let us

stack all nodes’ vectors x� into matrix X ∈ R�×� , which is called a

graph signal. The matrix product SX = Y results in another graph

signal, corresponding to the irst-order convolution we used in

(1), albeit without parameter Θ, which we will include shortly. By

writing S�X = S(S�−1X) we may see that this way we aggregate

the information � hops away. Again, although it requires � rounds

of information exchange, this operation may be performed without

intervention of a central entity.

Finally, a general graph convolution is deined simply as aweighted

sum of these � signals, i.e.,
∑
� S

�
Xℎ� , where scalars ℎ� are the

taps of the ilter. In this context, parameter Θ in (1) is interpreted

as a ilter bank. That is to say, by considering a � × � ′ matrix H�
instead of the scalar taps, a single-layer GNN (or graph perceptron)

is obtained by applying the pointwise non-linear function � (·) to

this convolution [8, 14]:

X
′
= �

(
�−1︁

�=0

S
�
XH�

)
, (2)

whereas a deep GNN is constructed by concatenating several per-

ceptrons.

2.2 GNNs for User Association

Although GNNs are a recent paradigm [20, 24], they have already

proved their usefulness to address diverse RA problems [13, 22,

23]. For complete reviews of GNN methods and applications, we

refer the reader to [28, 32?]. Examples of GNNs applied to solving

NP-hard or RA problems include combinatorial optimization [15],

measurements [5], network virtualization [25], optical networks

[1], and more.

Regarding UA for a UAV networking deployment, most of the

existing work focus on the problem of where to position the UAVs

to, for instance, maximize coverage [3, 29]. In our case study, we

assume that this deployment phase has already taken place, and

focus on how to associate users to eachUAV base station. In this case,

previous work proposes mostly a centralized scheme, or assumes

complete knowledge of all nodes [12, 18, 21]. A recent approach to

UAV deployment with GNNs [17] puts the emphasis on position

optimization for interference mitigation. The closest work to ours

[6] elaborates on a distributed approach, based on multi-agent

learning. However, and diferent from GROWS, each base-station

may only use a single subchannel per time-slot, meaning only one

user is served, imposing a strong restriction in the practice.

3 THE GROWS ALGORITHM

3.1 System Model

Let us consider a set of � Base Stations (BSs) ś we use the general

term BS to refer to a connectivity provider, either a UAV in FANETS,

a ixed BS in 5G, etc. Each BS has a limited set of frequency resources,

referred to as resource blocks (RB). We assume that BSs have an

internal assignation policy they follow for their associated users,

such as distributing its available resources equally among connected

users.

Like in many decision problems, we consider that time is slotted.

At each time interval � a user may or may not arrive, following

some probability distribution. Following the decentralization re-

quirement, we look for a UA solution which considers only local

�-hop information exchanges, and take into consideration the in-

crease of graph complexity related to the augmentation of the

action/state size. We therefore keep both state and actions simple ś

for scaling purposes, yet expressive enough to learn, specially to

take full advantage of the graph representations. In the event of

an arrival, one of the �-th BSs with strongest RSSI to the user, and

with available resources, serves the newcomer.

Following a Reinforcement Learning (RL) formulation [26], we

need to deine the tuple formed by (�, �,� , �, �). We refer to Figure

1 for a diagram visualization of the diferent components within

GROWS – DRL and GNNs for Wireless Networks , ,

?

?

?
system state

evaluate

actions

GNN predicts

environment agent

observation

action , next state

Figure 1: System model in GROWS. We consider at most one arrival at each time step. The combination of past decisions and

the present arrival constitutes the state of the system. The choice of which BS associates with the currently arrived user is the

action. After executing an action, a new state is observed and a reward is obtained.

the RL formulation in GROWS.

1 The system’s state � is deined as the aggregation of the BS’s

states and the user’s state. For each BS, the state is composed of a

representation of the present system’s state ś number of associated

users and mean utility, and the new user’s characteristics ś RSSI to

the BSs and traic demand.

2 The action � consists of selecting one of the BSs. Note that

not every time step involves an action; they may or may not occur.

To have a well deined Markov process, we include the decision-

making in the state, setting the demand to 0 for the time steps

when no user arrives. In this case there is no action to be taken,

only updating the system’s state.

3 Transitions � occur as depicted in Figure 1: the BS’s descrip-

tors are updated to include the action efect ś a +1 increase on

the number of users associated and a new mean utility, and the

time efect ś a -1 decrease on the number of users associated if a

user’s demand has been satisied. Each time step updates the new

user characteristics in the event of a new arrival. Transitions are

deterministic over the BS’s features given the action � and the state

� , but stochastic for the new user features.

4 The reward � is deined as the instantaneous utility of executing

an action for a given state. Following the literature [2, 4], and as

a means to promote fairness in the distribution of resources, we

take as utility/reward the log-sum of the throughput over the users,

� =
∑
�

∑
� log(1 + �ℎ(��,�)), where ��,� represents the �-th user

associated with BS �.

In RL formulations, the discount factor � is deined as a means

to estimate the expected discounted cumulative reward, which is

the value the RL algorithm tries to maximize:

�� = Σ
∞
� �

�� (�)

The expected discounted cumulative reward is optimized by up-

dating a policy (�) through one of Bellman’s equations. In GROWS

we take the action-value function for policy � , deined as [26]:

�� (�, �) = E�
[
Σ
∞
�=0�

���+�+1 |�� = �, �� = �
]
,

and use the update rule given by the optimality equation for the

state-action value function:

�� (�, �) = � + ��� (� ′, � (� ′))

To form the graph representation, we take at each decision time

a sub-graph of the FANET’s interconnected UAVs, where nodes

correspond to those BSs having (i) a signal strength with the newly

arrived user above a certain threshold (to allow potential asso-

ciation), and (ii) available resources to serve the user, and edges

represent their inter-connections. The state of each node is given

by the state of its related BS, and the user’s characteristics with

respect to that BS.

3.2 GROWS Algorithm Design

The GROWS algorithm is based on the classic Double DQN re-

inforcement learning algorithm [11], and its integration with the

GNN is inspired on previous work [1, 15]. The goal of the GNN is

to learn how to best approximate the q-function, an estimation of

the value-action function for the RL problem. The actor-critic role

in RL is to stabilize convergence of the algorithm. It is important

to notice that training and execution are done separately: once the

GNN is trained, prediction of the q-function according to the state

and possible actions is done instantly.

We take a LocalGNN [9] as the GNN model, which represents

an implementation of the popular Graph Convolutional Network

(GCN) introduced in section 2. An important virtue of the GCN is

that information aggregation is local for each node ś and extended

to the �-hops neighborhood, which means that the GCN output

for each node can run locally, enabling scalability for the proposed

algorithm.

4 UA IN FANETS WITH GROWS

We consider a wireless system in which users arrive and have to

connect to a certain BS. As we want to evaluate GROWS behavior

and performance in a FANETs deployment use case, we build a

synthetic scenario for evaluations. As explained before, the goal

is to learn a UA policy which maximizes the log-sum of the users’

, , Randall et al.

3.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.96
Average traffic load per time step

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Baseline

Q-learning

GROWs

3.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.96
Average traffic load per time step

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
e
a
n

 N
o
rm

a
li

z
e
d

 U
ti

li
ty

Baseline

Q-learning

GROWs

Figure 2: Mean normalized utility per episode over diferent

expected traic loads and arrival rates. GROWS clearly out-

performs both the baseline and the traditional q-learning

algorithm.

throughput, potentially improving the overall system utility as

compared to certain baseline policy. As stated, the optimal policy is

intractable: the problem is NP-hard and the number of states grows

too fast to run a search over all possible decisions. For this reason,

UA in current mobile networks is generally done through a simple

heuristic, consisting of selecting the BS with the highest signal

strength ś we refer to this UA policy as an argmax policy. Even if

simple, this strategy achieves reasonably good results, and is usually

considered among baselines in previous work [6, 27, 30, 31]. We

compare GROWS against this simple argmax policy, representing

the currently followed strategy ś we refer to it as the Baseline. We

note that this Baseline provides very close to optimal results in non-

congested scenarios, but fails in more stringent scenarios where

users are massed around one of the base stations.

We also compare GROWS against a pure RL approach, based on

q-learning. Naturally, this comparison can only be done for small

scenarios, as the q-learning approach rapidly becomes infeasible

due to the explosion in the number of states, which can only be

handled by DRL. Still, the comparison against q-learning serves to

evidence the advantage of using a deep model to estimate the q

action-value function.

Regarding parametrization of the experiments and testing condi-

tions, the following list describes the diferent components. As an

additional contribution, and for the sake of reproducibility, we share

GROWS implementation, see https://gitlab.ing.edu.uy/mrandall/grows.

We consider four BSs randomly located on a plane, with the condi-

tion of being each of them connected to at least another BS ś i.e.,

all UAVs have at least one connection to another UAV. We estimate

the RSSI to each other and to arriving users by using the standard

Friis equation with shadowing (setting the loss coeicient in 3).

We consider the shared frequencies and modulations of 4G and

5G, meaning a 20MHz bandwidth with 15KHz subcarriers over a

3GHz carrier, without MIMO and with FDD. Possible modulations

are selected depending on the RSSI: QPSK (-85 to -95 dB), 16-QAM

(-75 to -85 dB), 64-QAM (-65 to -75 dB), and 256-QAM (more than

-65 dB). At each step � , users arrive with probability � , which can

3.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.96
Average traffic load per time step

0

2

4

6

8

10

M
e
a
n

 R
e
je

c
ti

o
n

s
 p

e
r

e
p

is
o
d

e

Baseline

Q-learning

GROWs

Figure 3: Mean rejections per episode for diferent traic

loads. For the same expected traic demand �, user rejections

increase with higher user arrivals (0.5, 0.7 and 0.9), except

for GROWS, which is able to accept almost all users at every

episode.

vary in [0.5, 0.7, 0.9]. Users are uniformly located in the plane, with

the condition to have at least one valid signal with a BS ś e.g., at

least QPSK with a BS. Users have three possible down link demand

values to be satisied (for the sake of simplicity, we take units in

bits and not bytes): low (2 Mbits), medium (10 Mbits), and high

(20 Mbits). These demand values are taken following a probability

distribution, with which we can impose either heavier or lighter

demands. We call � the expected demand of a user arriving, which

can vary in [7.2, 10.4, 14.4]. The user’s throughput is determined

by using the Friis equation as stated above, inding the user’s RSSI

with the BS and then using the best suitable modulation.

Episodes consist of 100 time steps, and we use an epsilon-greedy

exploration/exploitation policy. We do exploration during the irst

15,000 episodes, and an aggressive exploitation on the last 5,000

episodes, following an acute exponential decay. Hyper-parameters

are calibrated through grid search, and we found that a learning

rate of 5.10−4 and batch size of 32 are suitable. We take � = 0.5 as

discount factor.

A GROWS performance for diferent traic loads: to study

the functioning of GROWS under diferent traic loads, we com-

pare results for the three diferent increasing arrival rates ś � =

[0.5, 0.7, 0.9], and for the three diferent demand probability distri-

butions ś � = [7.2, 10.4, 14.4]. Figure 2 reports the obtained results

in terms of utility for nine diferent UA policies, learned for diferent

traic loads ś the �-axis corresponds to � ×�, where the cumulative

reward is averaged every 50 episodes over the 5,000 exploitation

episodes ś resulting in 100 values, reported as box-plots. For the

sake of better visualization and interpretation of results, all utility

results are normalized to a random UA policy, where users are

assigned to BSs in a random manner. This means that a value of

1 in the normalized utility is equivalent to a random UA policy.

Figure 3 additionally reports the mean number of rejections per

episode. GROWS is not only able to improve utility as compared to

the other strategies, but most importantly, it does so while realizing

a close to null rejection rate, even in highly congested scenarios.

GROWS – DRL and GNNs for Wireless Networks , ,

3.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.96
Average traffic load per time step

1.0

1.2

1.4

1.6

1.8

2.0

2.2

M
e
a
n

 N
o
rm

a
li

z
e
d

 U
ti

li
ty

Baseline

Q-learning

GROWs

3.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.963.6 5.04 6.48 5.2 7.28 9.36 7.2 10.08 12.96
Average traffic load per time step

0

2

4

6

8

10

M
e
a
n

 R
e
je

c
ti

o
n

s
 p

e
r

e
p

is
o
d

e

Baseline

Q-learning

GROWs

(a) Normalized utility. (b) Rejections per episode.

Figure 4: UA performance for unseen scenarios with higher traic load, taking � = 16.2. Note that the average traic load values

(i.e., the �-axis) correspond to the traic loads used during training ś i.e., � = [0.5, 0.7, 0.9] and � = [7.2, 10.4, 14.4]. The actually

tested traic loads correspond to � = [0.5, 0.7, 0.9] and � = 16.2. GROWS outperforms the other strategies in utility, accepting

almost every user (50/50, 70/70, 88/90).

The steep curve for each � value follows the user arrival rate in-

crease: with � = [0.5, 0.7, 0.9] we have a mean number of arrivals of

[50, 70, 90] per episode. GROWS realizes an increase of 10% to 20%

over the baseline utility, accepting almost all users ś less than one

user-rejection per episode, while the baseline has rejection rates

over 5% of the total users.

Figure 2 also reveals that utility is mostly dependent on the

expected traic load �. Once users arrive and get connected to

a BS, utility remains rather stable, but as traic load increases,

connections last longer and new arrivals are rejected if no resources

are available. Following this reasoning, arrival rates � will have

a great impact in the number of rejections per episodes, which is

clearly observed in Figure 3. Indeed, for the same expected load, the

rejection rate increases directly with the increase of arrival rates.

GROWS UA policy counterbalances this performance degradation

through a smarter assignment of available resources, resulting in

an almost negligible user rejection rate.

B GROWS performance for unseen traic loads: an important

characteristic for an AI/ML driven system is being able to cope with

co-called Concept Drifts (CDs) in the analyzed data - i.e., modiica-

tions in the properties of the underlying probability distribution. A

CD can manifest itself as a shift in the mean, an increase or decrease

in the variance, or even as complete data modiications. For the

speciic problem of UA through learning, a desirable property is

being able to handle a signiicantly higher load of traic and users,

not seen at training time, where the standard heuristics such as

argmax would saturate (cf. Figure 3). For example, traic load could

surge in the event of lash-crowds, during emergency situations, or

even due to major social events requiring higher connectivity and

resources ś e.g., the traic load generated at the Super Bowl [7].

To analyze how GROWS behaves in the event of a strong surge

of traic load, we explore its application to higher traic loads not

observed at training time. More speciically, we take the nine UA

policies learned for the diferent values of � and � (cf. Figures 2 and

3), and apply them to a signiicantly higher user demand, taking

� = 16.2. For reference, this value represents a traic demand surge

of ×2.25, ×1.56, and ×1.13 for the UA policies learned with the

original � values (7.2, 10.4, and 14.4). Figure 4 reports the obtained

results in terms of (a) utility and (b) rejections ś note that the �-axis

indicates the traic loads used in training ś i.e., � = [0.5, 0.7, 0.9]

and � = [7.2, 10.4, 14.4], whereas the actually tested traic loads

correspond to � = [0.5, 0.7, 0.9] and � = 16.2.

GROWS is able to properly adapt to the new unseen traic load,

maintaining utility close to previous results and clearly outperform-

ing the other strategies. Most importantly, in the event of a surge in

traic load, GROWS rejection rates are still negligible, whereas they

signiicantly increase for both argmax and q-learning. We conclude

that GROWS is able to avoid bottlenecks, even when confronted to

unexpectedly high traic loads, which certainly represents the most

desirable feature for any RA/UA strategy. Finally, results bring to

light the good generalization properties of the GNN model, which

can correctly approximate the q-value function over unseen states.

5 CONCLUSIONS

We have presented our work in the ield of user association, an open

topic with renewed interest due to the needs of 5G and beyond tech-

nologies, as well as emerging wireless networks such as FANETs.

We proposed a deep reinforcement learning formulation of the UA

problem, using a GNN to estimate the q-value function, which gives

birth to the GROWS algorithm: a decentralized and scalable solu-

tion for user association in wireless systems. We have presented

results for several synthetic scenarios simulating FANETS wire-

less networks, where GROWS outperforms nowadays policies as

well as other q-learning approaches, realizing signiicantly higher

throughput utility while drastically reducing user rejection. We

have presented initial evidence suggesting that GROWS can gener-

alize to unseen scenarios and adapt to traic variations, keeping

a high throughput utility as well as low user rejection rates, even

, , Randall et al.

when confronted to unexpectedly high surges in traic demand.

The integration of users’ mobility and handovers into GROWS is

part of our ongoing work. Finally, while the focus of GROWS is into

UA and wireless networks, the proposed concept and system are

applicable to other RA problems in diferent domains, suggesting

further research leveraging DRL and GNNs for better and more

eicient usage of resources.

ACKNOWLEDGEMENTS

This work is partially funded by the Agencia Nacional de Inves-

tigación e Innovación (ANII) project Artiicial Intelligence for 5G

Networks (FMV_1_2019_1_155700), as well as supported by the Aus-

trian FFG ICT-of-the-Future DynAISEC project 887504 (Adaptive

AI/ML for Dynamic Cybersecurity Systems). Martín Randall’s PhD

is supported by a scholarship granted by the Agencia Nacional de

Investigación e Innovación (ANII).

REFERENCES
[1] Paul Almasan et al. 2019. Deep reinforcement learning meets graph neural net-

works: Exploring a routing optimization use case. arXiv preprint arXiv:1910.07421
(2019).

[2] T. Bu, L. Li, and R. Ramjee. [n. d.]. Generalized Proportional Fair Scheduling in
Third Generation Wireless Data Networks. In INFOCOM 2006.

[3] Ursula Challita et al. 2019. Interference Management for Cellular-Connected
UAVs: A Deep Reinforcement Learning Approach. IEEE Transactions on Wireless
Communications (2019).

[4] Jingdi Chen et al. 2021. Bringing Fairness to Actor-Critic Reinforcement Learning
for Network Utility Optimization. In INFOCOM 2021.

[5] Miles Cranmer et al. 2021. Unsupervised resource allocation with graph neural
networks. In NeurIPS 2020 Workshop on Pre-registration in Machine Learning.

[6] Jingjing Cui et al. 2020. Multi-Agent Reinforcement Learning-Based Resource
Allocation for UAV Networks. IEEE Transactions on Wireless Communications
(2020).

[7] Jefrey Erman et al. 2013. Understanding the Super Sized Traic of the Super
Bowl. In Proceedings of the 2013 Conference on Internet Measurement Conference
(IMC ’13).

[8] Fernando Gama et al. 2019. Convolutional Neural Network Architectures for
Signals Supported on Graphs. IEEE Transactions on Signal Processing (2019).

[9] Fernando Gama et al. 2019. Convolutional Neural Network Architectures for
Signals Supported on Graphs. IEEE Transactions on Signal Processing (2019).

[10] Xiaohu Ge et al. 2014. 5G wireless backhaul networks: challenges and research
advances. IEEE network (2014).

[11] Hado Hasselt. 2010. Double Q-learning. Advances in neural information processing
systems 23 (2010).

[12] Samira Hayat et al. 2016. Survey on Unmanned Aerial Vehicle Networks for Civil
Applications: A Communications Viewpoint. IEEE Communications Surveys &
Tutorials (2016).

[13] Ziyan He et al. 2020. Resource allocation based on graph neural networks in
vehicular communications. In GLOBECOM.

[14] Elvin Isui et al. 2021. EdgeNets:Edge Varying Graph Neural Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021).

[15] Elias Khalil et al. 2017. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing systems (2017).

[16] Thomas N. Kipf et al. 2017. Semi-supervised classiication with graph convolu-
tional networks. 5th ICLR (2017).

[17] Pei Li et al. 2022. Graph neural network-based scheduling for multi-UAV-enabled
communications in D2D networks. Digital Communications and Networks (2022).

[18] Mohammad Mozafari et al. 2019. A Tutorial on UAVs for Wireless Networks:
Applications, Challenges, and Open Problems. IEEE Communications Surveys &
Tutorials (2019).

[19] Hawar Ramazanali et al. 2016. Survey of user association in 5G HetNets. In 2016
8th IEEE LATINCOM.

[20] Franco Scarselli et al. 2008. The graph neural network model. IEEE transactions
on neural networks (2008).

[21] Hazim Shakhatreh et al. 2019. Unmanned Aerial Vehicles (UAVs): A Survey on
Civil Applications and Key Research Challenges. IEEE Access (2019).

[22] Yifei Shen et al. 2019. A graph neural network approach for scalable wireless
power control. In 2019 IEEE Globecom Workshops (GC Wkshps).

[23] Yifei Shen et al. 2020. Graph neural networks for scalable radio resource man-
agement: Architecture design and theoretical analysis. IEEE Journal on Selected
Areas in Communications (2020).

[24] José Suárez-Varela et al. 2021. Graph Neural Networks for Communication
Networks: Context, Use Cases and Opportunities. arXiv preprint arXiv:2112.14792
(2021).

[25] Penghao Sun et al. 2020. Combining deep reinforcement learning with graph
neural networks for optimal VNF placement. IEEE Communications Letters (2020).

[26] Richard S Sutton et al. 2018. Reinforcement learning: An introduction. MIT press.
[27] Ning Wang et al. 2016. Joint downlink cell association and bandwidth allocation

for wireless backhauling in two-tier HetNets with large-scale antenna arrays.
IEEE Transactions on Wireless Communications (2016).

[28] Zonghan Wu et al. 2020. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning systems (2020).

[29] Qianqian Zhang et al. 2018. Machine Learning for Predictive On-Demand De-
ployment of Uavs for Wireless Communications. In GLOBECOM.

[30] Yalin Zhang et al. 2020. Deep learning based user association in heterogeneous
wireless networks. IEEE Access (2020).

[31] Nan Zhao et al. 2019. Deep reinforcement learning for user association and
resource allocation in heterogeneous cellular networks. IEEE Transactions on
Wireless Communications (2019).

[32] Jie Zhou et al. 2020. Graph neural networks: A review ofmethods and applications.
AI Open (2020).

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

