Por favor, use este identificador para citar o enlazar este ítem: 
                
           
                 
                
    
    https://hdl.handle.net/20.500.12008/35263 
                
                
                Cómo citar
                | Título: | High performance computing simulations of self-gravity in astronomical agglomerates | 
| Autor: | Rocchetti, Néstor Nesmachnow, Sergio Tancredi Machado, Gonzalo José  | 
| Tipo: | Preprint | 
| Palabras clave: | Simulation, High-performance computing, Self-gravity, Astronomical agglomerates | 
| Fecha de publicación: | 2021 | 
| Resumen: | This article describes the advances on the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Three algorithms are presented and evaluated: the occupied cells method, and two variations of the Barnes & Hut method using an octal and a binary tree. Two scenarios are considered in the evaluation: two agglomerates orbiting each other and a collapsing cube. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100  with respect to the occupied cell method, while having a correct numerical accuracy. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.  | 
| Descripción: | Versión permitida: preprint | 
| Financiadores: | ANII: FCE_1_2019_1_156451 | 
| Citación: | Rocchetti, N, Nesmachnow, S y Tancredi Machado, G. "High performance computing simulations of self-gravity in astronomical agglomerates" [preprint]. Publicado en: Simulation, 2021. 20 h. DOI: 10.1177/2F0037549721998766. | 
| Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | 
| Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias | 
Ficheros en este ítem: 
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| 10.11770037549721998766.pdf | 1,39 MB | Adobe PDF | Visualizar/Abrir | 
Este ítem está sujeto a una licencia Creative Commons  Licencia Creative Commons