
High performance computing
simulations of self-gravity in
astronomical agglomerates

Néstor Rocchetti, Sergio Nesmachnow and Gonzalo Tancredi

Submission for the Special Issue on High Performance Computing Activities in the Ibero American region (S19-1)

Abstract
This article describes the advances on the design, implementation, and evaluation of efficient algorithms for self-gravity
simulations in astronomical agglomerates. Three algorithms are presented and evaluated: the occupied cells method,
and two variations of the Barnes & Hut method using an octal and a binary tree. Two scenarios are considered in the
evaluation: two agglomerates orbiting each other and a collapsing cube. Results show that the proposed octal tree
Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100× with respect to the
occupied cell method, while having a correct numerical accuracy. The proposed algorithms are efficient and accurate
methods for self-gravity simulations in astronomical agglomerates.

Keywords
Simulation, high-performance computing, self-gravity, astronomical agglomerates

Introduction

Some astronomical objects, like asteroids and comets, are
agglomerates of smaller particles called grains, which are
kept together by their mutual gravitational force. Grains are
affected by short range interactions (e.g., contact forces)
and long range interactions. Long range interactions are a
combination of the effect of the influence of the gravity of
other objects and the effect of the influence of the other
grains that conform the agglomerate itself. The latter is called
self-gravity of the agglomerate (Harris et al. 2009; Fujiwara
et al. 2006). Gravitational potential can cause attraction
between astronomical objects and also deformations. This
way, self-gravity gives shape to asteroids and comets
composed of agglomerates of particles (Rozitis et al. 2014).

Due to the intrinsic complexity of modeling interactions
between particles, agglomerates are studied using computa-
tional simulations. A straightforward approach to compute
the long range interactions between every pair of particles in
an agglomerate with N particles has a computational cost of
O(N2) in each step of the simulation. Thus, performing sim-
ulations of millions of particles, as usual to model medium-
size astronomical objects, is computationally expensive.

The High Performance Computing (HPC) paradigm
helps researchers to solve complex problems and perform
simulations on big domains. HPC allows dealing with
complex problems that demand high computer power in
reasonable execution times. Instead of using a single
computing resource, HPC proposes using multiple resources
in parallel, applying a coordinated approach. This way, a
cooperation strategy is implemented, allowing the workload
to be divided between the computational units available to
solve a complex problem in reasonable execution times.

ESyS-Particle Abe et al. (2009) is a software library
for simulation of geological phenomena using the Discrete
Element Method (DEM). ESyS-Particle includes features for
execution in parallel and distributed environments.

The first applications of ESyS-Particle in planetary sci-
ences were presented by our research group (Tancredi et al.
2012), including simulations in low-gravity environments
(asteroids and comets) and new models to simulate contact
forces. A specific shortcoming of ESyS-Particle (and other
DEM software) is the lack of models to simulate long-range
forces. Our previous work (Frascarelli et al. 2014) proposed
a self-gravity module applying HPC techniques to allow
performing simulations of thousands of particles efficiently
by exploiting multiple computing resources. Strategies to
efficiently compute long-range forces were introduced, im-
plemented, and evaluated over realistic scenarios.

In this line of work, this article presents parallel multi-
threading algorithms for self-gravity calculation, including a
method that updates the occupied cells on an underlying grid
and a variation of the Barnes & Hut method that partitions
and arranges the simulation space in both an octal and a
binary tree to speed up long range forces calculation. Both
methods and its variants are evaluated and compared over
two scenarios: two agglomerates orbiting each other and a
collapsing cube. The experimental evaluation comprises the
performance analysis of the two scenarios using the two
methods, including a comparison of the results obtained and
the analysis of the numerical accuracy. Both scenarios were
evaluated scaling the number of computational resources
to simulate instances with different number of particles.
Results show that the proposed octal tree Barnes & Hut
method allows improving the performance of the self-gravity
calculation up to 100× with respect to the occupied cell
method. This way, efficient simulations are performed for the
largest problem instance including 2,097,152 particles.

Universidad de la República, Uruguay

Corresponding author:
Néstor Rocchetti, Universidad de la República, Uruguay.
Email: nrocchetti@fing.edu.uy

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

This article extends our previous conference articles:
"Comparison of Tree Based Strategies for Parallel Simula-
tion of Self-gravity in Agglomerates" (Rocchetti et al. 2018)
and "Large-Scale Multithreading Self-Gravity Simulations
for Astronomical Agglomerates" (Nesmachnow et al. 2019).
The main contributions of this article are: i) the presentation
and the experimental evaluation of an upper tree level mass
center calculation implemented as an extension of the mass
center calculation algorithm included in the Barnes & Hut
octal tree construction algorithm, ii) the experimental analy-
sis of the Barnes & Hut octal tree algorithm with a collapsing
cube scenario, and iii) the study of the conservation of the
center of mass and the angular momentum for the scenarios
and the algorithms presented in this article.

The article is organized as follows. Next section introduces
the self-gravity calculation problem and reviews related
works on domain decomposition for particle simulators.
After that, a parallel self-gravity calculation algorithm
is presented which is the base of our work. Then, the
adapted Barnes & Hut method for self-gravity calculation
is described. Next, the test scenarios and instances used to
perform the evaluation are described. Then, the experimental
evaluation of the octal tree is presented, followed in the next
section by the experimental evaluation of the binary tree
algorithm and the upper tree level mass center calculation.
Finally, the conclusions and main lines for future work are
formulated.

Self-gravity simulations
This section describes the problem of simulating self-
gravity interactions in agglomerates and reviews relevant
related works on self-gravity simulation applying domain
decomposition techniques.

The self-gravity calculation problem
The self-gravity calculation problem consists of computing
the self-gravity of assemblies of N particles. In this problem,
every particle in the assembly interacts (and is affected by)
all other particles. The mathematical model for computing
the gravitational potential resulting of the gravitational
interaction with the rest of the particles in the studied system
is expressed in Equation 1, where G is the gravitational
constant, ‖−→r ‖ is the norm of vector −→r , Mi is the mass of
the particle, and Vj is the gravitational potential of particle j.

Vj =
∑
i6=j

GMi

‖ −→rj −−→ri ‖
(1)

A straightforward implementation of the gravitational
potential calculation according to Equation 1 results in a
computational cost of O(N2) when calculating the velocity
for each particle in each time step. This approach turns to be
inefficient when the simulation scenario scales to hundreds
of thousands of particles.

Many techniques have been developed in order to
overcome the computational inefficiency problem when
considering simulations with many particles. The objective
of the methods proposed is to develop strategies to efficiently
calculate the long range forces based on algorithms that form
groups of particles.

Related work on spatial domain decomposition
This subsection reviews static and dynamic domain decom-
position techniques to speed up the self-gravity calculation
when performing astrophysical particle simulations.

Static hierarchical domain decomposition. Static tech-
niques for particle interaction are based on a domain de-
composition that stays invariable during a simulation. Static
techniques are divided in three models: Particle-Particle
(PP) methods, Particle-Mesh (PM) methods, and Particle-
Particle Particle-Mesh (P3M) methods (Hockney and East-
wood 1988). PP methods compute the forces directly be-
tween all particles in the system. Despite being the most
simple and accurate, PP methods do not scale in the number
of particles, due to its O(N2) execution time. PM methods
use a mesh over the simulated space and compute the po-
tential for each particle that belongs to the mesh. After that,
the speed for the particles is calculated via an interpolation.
Although PM methods are less accurate than PP methods
when computing the forces, they are faster. However, in
many practical applications, PM may need a mesh resolution
that should result to be slower than a PP method; thus the
PM model is not usually used to calculate contact forces.
Finally, P3M methods combine the PP and the PM models.
Short range forces are calculated using a PP method and
long range forces are calculated using a PM method. The
combination results in a fast and accurate method to simulate
particle interaction. Many implementations and variations of
the aforementioned three models are present in the literature.
Some of the most relevant are reviewed next.

Couchman (1991) proposed a P3M algorithm that applies
a selective refinement of the grid recursively when the
particle density of a cell exceeds a threshold. The particle
mesh is an spatial division without overlapping zones, so
load balancing is achieved by assigning a similar number of
particles to each processing unit. The results obtained after
the refinements are then passed over to the father cell to
be integrated via direct summation. There is a correlation
between the level of refinement of the grid and the time spent
to integrate the results calculated for the individual cells. The
refinement level has to be calibrated for this method to be
efficient. The method had two drawback: the domain of the
simulation must be cubic and the space must be divided into
an integer number of cells of the same size. Couchman stated
that, in this method "the gain is in simplicity" (p. 24). Results
indicated that the algorithm is up to 20 times faster than a
P3M algorithm and also requires less memory.

Kravtsov et al. (1997) presented the Adaptive Refinement
Tree N-body solver, based on the PM method over a
multilevel grid to perform the force calculations. The mesh
is created over a cubic space that is divided by regular
cells with cubic shape and a predefined size. A multilevel
mesh is defined by dividing large cells into eight equally-
sized parts, depending on the particle density. The multilevel
mesh is created at the beginning of the simulation and is
partially updated when the forces need to be recalculated.
The smallest size of an element of the grid is the resolution of
the mesh (a cell). The implementation was partially parallel
(just the update of the forces in the particles). Kravstov
et al. stated that the solution is half as fast as the Fourier
transform solver with the same number of cells.

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 3

Sánchez and Scheeres (2012) implemented a PM
simulator using the same static domain decomposition to
compute short and long range interactions. The simulation
space is divided in cubical cells that are many times
bigger than the particles radius. Then, instead of considering
individual particles to calculate the gravitational potential,
a whole cell is considered as a particle. The method is
still O(N2), but the authors claimed that the required
calculations decrease in one order of magnitude. Short range
and long range interactions are computed concurrently, but
no parallel implementation was proposed. Thus, the method
was only able to perform efficient simulations of systems
with up to 8, 000 particles. Results show that the algorithm
implemented is not suitable to perform large simulations
comprising hundreds of thousands particles. In order to do
so, a parallel/distributed implementation is needed.

Dynamic hierarchical domain decomposition. Dynamic
techniques for particle interaction use structures that are
adapted or reconstructed from scratch during the simulation.
A classic dynamic technique is the Barnes and Hut (1986)
method. The simulated domain is divided in a hierarchical
octal tree to accelerate the calculation of the gravitational
potential in N -body simulations. Nodes of the tree represent
a portion of the simulation space. If a node (i.e., the space
it represents) contains more than one particle, the space is
divided into smaller pieces (in a 2D simulation the space
is divided in four smaller pieces, in a 3D simulation, the
space is divided into eight pieces). Applying this domain
decomposition, long-range interactions are calculated in
O(N logN), but the error increases as the simulation runs.

The Fast Multipole Method (Greengard and Rokhlin 1987)
performs an expansion of the simulation space, organized
as a hierarchy of meshes rather than a tree. Authors claim
that clusters of particles can interact with one another as
long as they are “well separated" (considering a predefined
parameter). The expansion is pure spatial. The spatial center
of a father mesh box is an expansion center of the next level.
The potential is computed for the center of all meshes. Then,
the potential for each particle is extrapolated from the nearest
neighbor boxes at the finest mesh level. The algorithm was
implemented and compared to a direct computation. Results
of the comparison indicate that in an instance consisting of
12,800 particles the execution time of the method presented
is 300× lower than the direct method.

Combined techniques. Xu (1994) presented Tree Particle
Mesh (TPM), a variation of the P3M method that computes
short-range interactions using the Barnes & Hut algorithm.
However, long-range interactions are calculated using a PM
method. TPM applies trees (using different time steps) only
on the parts of the field that have a density over a certain
threshold. Regions with low particle density are managed
only by the PM method. TPM is faster because less cells are
created when using the tree. TPM was parallelized using a
Multiple Instruction Multiple Data model. To provide load
balance, the tree code was parallelized in two levels. After
constructing a tree, its structure is broadcasted to processes
that will perform the tree walk and force summation. The tree
construction was not parallelized because it only demands
2.5% of the time. TPM had a speedup of 26 on 32 processors
and was 12× faster than PM.

Bode et al. (2000) improved the TPM method, combining
PM to compute long range interactions and a tree to compute
short range interactions. PM and the tree algorithm starts
with the same time step, but the latter can use a smaller time
step if needed. The space is divided into clusters, grouping
cells based on particle density. A comparison with the P3M
algorithm showed that TPM speed up the simulations “by
a factor of 3–4” when the trees have individual time steps.
The algorithm scales properly from 4 to 16 processors, then
efficiency dropped to 70% in 32 nodes.

Bagla (2002) presented the TreePM method for simulating
agglomerates, combining PM and Barnes & Hut to compute
short range forces. For short range forces, the contribution is
computed from particles or from grid cells when a distance
threshold is exceeded. TreePM and TPM methods differ in
two aspects: i) TPM uses the PM method to compute long
range forces, TreePM uses an explicit distance to decide
which method is used to compute the forces in a region, and
ii) in TPM forces are computed for each individual particle
only in high density regions, but in TreePM the forces are
computed individually for all particles. Results indicated that
TreePM is about 4.5× faster than a tree algorithm and the
simulations scaled in O(N logN ).

Khandai and Bagla (2009) presented a modification of
TreePM algorithm using a tree to calculate the short range
forces. The force is computed in only one tree walk. In
addition, particles are divided into groups, but instead of
grouping them by their densities as suggested by Bode et al.
(2000), the groups are created according to the particles
number and volume. The authors performed experiments
with scenarios with between 323 to 2563 particles. Results
indicated that a TreePM algorithm with group scheme and
individual time steps for each group had a speed up of 12.72
compared to an unoptimized TreePM algorithm.

Ishiyama et al. (2012) presented a variation of TreePM for
a N-body simulation of one trillion particles executed using
K Computer (Japan) at full capacity (663552-cores). For
short-range forces, the Barnes & Hut algorithm was modified
to create trees for groups of particles and a list of shared
tree nodes and particles was implemented. Authors claim that
TreePM “can reduce the computational cost of tree traversal
by a factor of Ni" (p.3) being Ni the average number of
particles of the groups. A 3D multi-section decomposition
was applied and load balancing adjusts the size of the
cells according to the cost of calculating their potential.
As a complement, the interactions were calculated using
the Single Instruction Multiple Data paradigm, combined
with loop unrolling. Regarding the PM method, a distributed
Fast Fourier Transform was implemented. Reported results
indicated that the algorithm proposed has good scalability
in terms of the number of nodes used, which means that
there is not a significative overhead in the communications.
The algorithm achieved a performance of 4.45 Pflops and an
efficiency of 43% using 82,944 computing nodes.

The analysis of the related works allows identifying
several proposals for N-body simulations applying spatial
domain decomposition for force calculation in agglomerates.
However, no previous work has proposed an efficient method
for self-gravity calculation in astronomical agglomerates
implemented on a wide purpose public simulation library, as
this article contributes.

Prepared using sagej.cls



4 Journal Title XX(X)

A parallel algorithm for self-gravity
calculation
This section presents the proposed algorithmic approach for
parallel self-gravity simulations.

DEM-based self-gravity simulations
Our previous work (Frascarelli et al. 2014) presented an
algorithm based on DEM to perform self-gravity calculations
and contact forces calculations for simulating small solar
system bodies. The algorithm applies parallel multithreading
techniques to accelerate the calculation of long-range
forces and also short-range contact forces. For long-range
forces computation, a domain decomposition technique
was implemented following the master-worker model for
parallelization. The advantage of using threads lies in the
efficiency of the data communication and synchronization
via shared memory. A pool of threads was used to avoid
the intensive creation and destruction of threads. The
algorithm consists of five stages: initialization, threads
creation, self-gravity calculation, interpolation, and output.
The initialization phase consists of initializing the shared
memory and loading the information of the particles. Then,
in the threads creation phase, the self-gravity calculation
is divided into smaller tasks to be assigned to the pool of
threads. Afterwards, in the self-gravity calculation phase, the
tasks are assigned in turn to an idle thread of the pool created
in the previous phase. Then, the pool of spawned threads is
used to perform an interpolation for each of the particles in
the system with respect to the eight surrounding nodes in
order to calculate the self-gravity of each particle.

To increase the performance of the algorithm, the
acceleration is calculated for a virtual point located at the
center of each cell that composes the grid. Thus, a cell
of the grid is the minimum processing unit. A hierarchical
grouping approximation method (Mass Approximation
Distance Algorithm, MADA) was introduced. The main goal
of MADA is to accelerate the calculation of the gravitational
potential of a particle in a given time step, by considering a
group of distant particles as a single particle located in the
center of mass of the group. The proposed parallel algorithm
calculates the self-gravity using MADA and a pool of worker
threads that execute the most computing-intensive tasks in
parallel sections, following a P3M approach. The principle of
MADA is that, when calculating the self-gravity for a given
cell, a more refined grid is used for the cells that are near the
cell to update. This way, the self-gravity is calculated more
accurately. The particles are used individually for the cells
that are next to the cell to update.

The experimental evaluation studied the efficiency and
accuracy of the proposed strategies. The infrastructure used
to perform the evaluation was a 24-core, 2.1-GHz AMD
Opteron 6172 processor with 24 GB RAM from Cluster
FING (Nesmachnow 2010). To test the numerical accuracy,
an scenario containing an agglomerate of 1,022,208 particles
with a radius of 20m was used. Results showed an
error less than 0.1% of the theoretical center of mass.
Computational efficiency results showed a near linear
speed up when using approximately 100,000 particles.
Nevertheless, the computational efficiency decreased as the
number of particles increased.

Later, our work (Nesmachnow et al. 2015) studied several
computation and data-assignment patterns to determine the
best efficiency and scalability properties of the resulting self-
gravity computation method. Four strategies were proposed
to dynamically balance the workload assigned to the threads
that calculate self-gravity: interlocking linear: each worker
thread linearly takes a cell to process (the first thread takes
the first cell to process, the second thread takes the second,
and so on until all the threads have been assigned a cell to
process); then, the first thread that finishes working takes the
next available cell to process; circular concentric: threads are
divided into two groups; one group starts processing the cells
from the center of the grid and the other from the border with
the main goal of reusing the already calculated centers of
mass; basic isolated linear: consists of assigning clusters of
cells of equal size to each thread of the pool; and advanced
isolated linear: divides the workload evenly between the
threads spawned and after a thread finishes processing its
workload, it starts processing the nearest unprocessed cell;
until there are no cells left to process. the Advanced isolated
linear strategy obtained the best results, being able to scale
up linearly with the number of particles in the system, and
with an inverse power law (exponent 0.87) with the number
of threads. The observed speed up was close to linear for
systems containing up to 2×105 particles.

The previous self-gravity algorithms were not integrated
in a tool or software library. Next subsection describes how
the self-gravity algorithm was included in the ESyS-Particle
particle interaction simulator to perform realistic simulations
in low gravity environments.

Implementation of the self-gravity algorithm on
ESyS-Particle

ESyS-Particle was developed to simulate geophysical
phenomena, so the included particle interacions only
comprise contact forces. Weatherley et al. (2010) analyzed
the scalability and the accuracy of the calculations of contact
forces algorithm in ESyS-Particle. Depending on the number
of particles, every time the total forces of the particles are
updated, the computation can last from seconds to hours.

When including self-gravity in ESyS-Particle, it must be
considered that the number of calculations for N particles
and M nodes in the grid is O(N×M). To deal with
that efficiency problem, HPC techniques were applied to
speed up the calculations. ESyS-Particle implements an
static spatial domain decomposition using a master-slave
model implemented on MPI. The domain decomposition
is described by numerical parameters, one for each axis,
indicating how many times each dimension must be divided.
E.g., (1,2,2) means that at the beginning of the simulation,
the x dimension is not divided, while dimensions y and z
are divided into two sections; thus, the space is divided into
four subdomains. Each subdomain is assigned to a process,
ideally dividing the total calculations by a factor of four.

The idea for including the self-gravity calculation
module in ESyS-Particle was to extend the functionality
of ESyS-Particle by enabling the simulation of long-range
interactions. The computation scheme in the self-gravity
module implemented into ESyS-Particle applies four steps:

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 5

1. Compute the gravity acceleration field in a grid
of nodes enclosing the limits of the space of the
simulation;

2. For every particle at each time step, compute the
contact forces over the particle and interpolate the
value of the acceleration for the location of the particle
using the values of the acceleration on the surrounding
nodes;

3. Apply the forces and advance the system;
4. If a large displacement of the particles is found, the

gravity field is updated; if not, the previous gravity
field is used for the next time step and step 2 is
executed again.

The variation of the gravity forces applied to a particle
is affected by the velocity of the particles in the system.
During the simulation, self-gravity forces are updated after
the particles in the system move a distance that is larger
than a certain threshold. When particles move faster in a
simulation, self-gravity needs to be updated more frequently.
However, the frequency of update of the contact forces is
of the order of the duration of the contact. In low speed
simulations, the number of updates of contact forces can be
many orders of magnitude more than the number of updates
of long range forces.

The implementation of the self-gravity algorithm is
based on a master-worker model, but including a two-level
parallelization scheme: i) a master-worker model is used
to calculate and update the forces that affect the particles,
implemented using a distributed memory approach. The
master process is in charge of calling the self-gravity module,
which calculates and updates the gravity forces that affect
the particles; and ii) the calculation of self-gravity forces
is implemented using shared memory and multithreading
programming techniques.

Before starting a simulation, the self-gravity module
builds and overlays a grid to divide the spatial domain of the
simulation. The grid is composed of boxes, whose vertexes
are called nodes. The number of nodes and their location
are defined depending on the spatial domain and the size of
the boxes. The acceleration along the x-axis (ax) on a node
located at position (x, y, z) due to an ensemble of N particles
of individual mass mj , radius rj , and positions (xj , yj , zj) is
given by Equation 2. Similar equations are formulated for
the acceleration along the y-axis (Equation 3) and the z-axis
(Equation 4).

ax =
∑

j=1,N

Gmj
xj − x

r3j
(2)

ay =
∑

j=1,N

Gmj
yj − y

r3j
(3)

az =
∑

j=1,N

Gmj
zj − z

r3j
(4)

Figure 1 shows a particle inside its box and its eight
surrounding nodes in a step of a simulation. The nodes are
numbered from one to eight. The acceleration is updated
for the nodes rather than for the particles. To calculate
the acceleration of a particle at a given time step of a
simulation, an interpolation is applied using the values of the
acceleration calculated for the eight nodes that surround the
particle.

Figure 1. Box of the self-gravity grid with eight nodes.

Adapted Barnes & Hut method for
self-gravity calculation

This section describes the Barnes & Hut octal tree used for
the self-gravity calculation in ESyS-Particle and a binary
implementation applied for results comparison.

Octal tree structure
The Barnes & Hut tree is implemented as an octal tree
in which the root represents the complete space used for
the simulation. Leaf nodes of the tree are the boxes of the
self-gravity grid. Every non-leaf node has eight sons that
have the same size. This way, the space represented by the
tree is of cubical shape. Each node also has the following
information: the position of the center of mass, the total
mass, the spatial coordinates, the coordinates in the self-
gravity grid, the level number, the number of particles in it,
and an integer that identifies the node in the level it belongs.
All nodes of a level are numbered from 0 to n− 1 being
n the number of nodes of the level. The identifiers (id) are
assigned to the nodes so that the id of the father of a node
satisfies that idf = ids/(108 × (levels/levelf ), where idx
is the identifier of the node, levelx is the level of the node,
the underscore f denotes a father node and the underscore
s denotes a son node. The underscore ‘8’ denotes that the
number is in octal base. This way, knowing if a node is son of
another is a constant time operation O(1). Dividing by 108,
the identifier of a node is equivalent to performing a shift
operation of three bits to the right. Figure 2 shows a sample
two-dimensional tree partition created for an agglomerate of
particles and an illustration example of the space partitioning
of the adapted Barnes & Hut method. The grid over the
agglomerates represents the quadrupole (octapole in three
dimensions) tree resulting of the application of the creation
of the self-gravity tree. The resolution of the partition is not
increased on the nodes that have no particles, by stating that
the tree node created is empty after its creation.

Creation of the octal tree
The implementation of the Barnes & Hut algorithm consists
of instantiating one octal tree for the complete space of
an scenario of a simulation. The octal tree is created and
disposed every time the gravitational potential is updated.

Prepared using sagej.cls



6 Journal Title XX(X)

Figure 2. Example of tree partition for an agglomerate of
particles (a two dimensions projection is shown for better
representing the division method).

The self-gravity update process consists of four steps: i)
creating the Barnes & Hut tree applied for the computation
(the self-gravity tree); ii) building a list of tree nodes for each
of the boxes that contain particles (i.e.: occupied nodes); this
is the list of Barnes & Hut tree nodes that affect the potential
of the box to be updated; iii) effectively computing the self-
gravity of the occupied nodes using as input the list of tree
nodes created in the previous step; iv) finally, deleting the
octal tree after updating the potential of the nodes. These
steps are explained next.

Algorithm 1 describes the process of calculating the self-
gravity potential using the proposed Barnes & Hut algorithm.
First, the expanded occupied cells list is created (lines 2–3),
performing the 64-node expansion of each of the occupied
nodes, but only adding those nodes that belong to the
expansion that were not already added to the expanded list.
Afterwards, the first step in the calculation of the self-gravity
is executed: the octal tree is created and the center of mass of
each node of the tree is calculated (lines 4–5). The creation
of the tree node list of each of the expanded occupied cells
comprises the loop in line 6. Then, the third step calculates
the potential of the nodes in the loop in line 9. The output
of step 3 is the new potential of the expanded occupied cells
list, which is communicated to the worker nodes to calculate
the potential of the particles.

Algorithm 1 General octal tree algorithm

1: procedure RECALCULATE SELF-GRAVITY
2: OC list← getOccupiedCells()
3: expanded OC← getBoxRecalculate(OC list)
4: ot← createOctalTree()
5: calculateCentersOfMass(ot)
6: for each oc in expanded OC do
7: list TN← createListOfNodes(oc, ot)
8: add(list of list of TN, list of TN)
9: for each oc in expanded OC do

10: update← updateSelfGravity(oc, list of list of TN)
11: add(updated cell list, updated cell)
12: communicateNewValues(updated cell list)

Creation of the self-gravity tree. The process of creating
a Barnes & Hut tree starts with the instantiation of a root
node. The root node represents the complete space defined
for the simulation. Due to the nature of the octal tree
structure proposed by Barnes & Hut, the space to perform
the simulation is cubic shaped. As a consequence, the root
node also has cubic shape. After the root node is instantiated,
the tree levels are created sequentially. Each new level is
created by performing a spatial partition of each of the nodes
that belong to the immediate upper level. An expansion of a
node is created if that node has at least one particle in it. The
new nodes are the child nodes of the node from which they
were created by performing the spatial partition. The spatial
partition consists of creating eight child nodes by partitioning
the space of the father node in eight equal cubic parts. The
process of spatial partitioning ends when the node to expand
has the same size of a box of the grid used for self-gravity
computation, or if the node to expand has no particles.

A node of the Barnes & Hut tree represents a (cubical
shaped) part of the space of its father node. For that reason, a
node of the tree is represented as a structure which stores the
coordinates and also the edge size of the node. In addition,
the structure of a node holds the following data: an identifier,
the number of particles in the node, the total mass, and the
position of the center of mass of all the particles contained
inside the node. The identifier is assigned during the creation
of the node and is composed by two numbers: the level of
the tree where the node belongs, and the number of the node,
which is unique in the context of the level. The root node
is identified with the number 0 and belongs to the level 0.
The identifier is used to establish the location of a node in a
given level of a tree. In this way, the identifier is reseted to
0 in every level of the tree. With this identification system,
having the level of a node and its identifier as input data,
the procedure to know if a node is son of another constitutes
an operation of O(1) execution time. This property of the
Barnes & Hut tree implemented improves the time of the
calculation of the self-gravity potential at the nodes. After
the creation of the tree, the centers of mass of the nodes
are calculated. The process of calculation of the centers of
mass is bottom up, from the leaves up to the root node. The
centers of mass for the leaf nodes are calculated directly
from the particles, whereas for the nodes of the upper levels
the centers of mass are calculated from their respective son
nodes. The center of mass is calculated only for the nodes
that have particles. Figure 3 shows a sample octal tree created
using the described algorithm for a cube composed of 64
boxes. As an example, the center of mass for the node located
in the upper left part of the Figure 3 is not calculated because
it has no particles.

08

08

08 · · · 78

· · · 78

708 · · · 778 → level 2

→ level 1

→ level 0

· · ·

Figure 3. Sample of octal tree created using the described
algorithm for a self-gravity grid composed of 64 boxes.

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 7

Algorithm 2 summarizes the creation of the octal tree. The
height of the tree is calculated in line 2 and used in line 3 to
create a queue of node levels used as an auxiliary structure.
Then, the creation of the tree starts with by instantiating a
root node (line 4), which is added to the level queue position
that corresponds to the level 0 of the tree (line 5). The
created auxiliary structure is used to create the tree nodes
and organize them. The creation of the octal tree (lines 6–
11) consists of two loops: the outer loop iterates over the
level of the tree from the root to the box nodes, whereas the
inner loop iterates over all the nodes of a level. The outer
loop performs the change of level. In the inner loop, for each
node, the list of sons that correspond to that node is created
(line 9) and associated to the lower level queue (line 10).
Lines 14–18 correspond to particle counting and center of
mass calculation for the nodes. The octal tree is covered by
level from the lowest level nodes (i.e., nodes that match with
the boxes) up to the root node. The particle count and mass
center of lower level nodes are used to calculate the values
for the upper levels. Finally, the root node is returned as the
representant of the complete octal tree (line 19). The tree is
returned in this format because in all cases where the octal
tree needs to be covered, the process always starts from the
root node to the box nodes.

Algorithm 2 Creation of the octal tree

1: procedure CREATE OCTAL TREE()
2: tree height← calcTreeHeight(dim, box length)
3: NL queue← createQL(tree height)
4: root node← createNode()
5: NL queue.at(0).push(root node)
6: for tree level = 0 to tree height - 1 do
7: LLqueue← NL queue.at(tree level + 1)
8: for each node in upper level queue do
9: LL node sons← createSonsList(NQ)

10: LL queue← add(LL node sons)
11: NQ← LL queue
12: root node← getFront(NQ)
13: # Calculate particle count and center of mass
14: for tree level = tree height - 2 to 0 do
15: level NQ← node level queue.pop()
16: for each node in level NQ do
17: calculateParticleCount(node)
18: mass center← MassCenterNode(node)
19: return root node

Algorithm 3 summarizes the creation of the eight sons of
a not leaf node in the octal tree. First, the list of sons to
be returned is created. The id of the first son is calculated,
shifting 3 places the father id. The size of each node is half
the size of the father node. For each of the eight sons, the
position of the node is calculated, then the node is created
and added to the sons list.

Creation of the tree nodes list. The second step in the
simulation is to create a list of tree nodes for each of
the occupied nodes of the grid, called objective nodes.
The concept of neighborhood of a node is introduced. A
neighborhood of a node is conformed by its surrounding
nodes that do not exceed a user defined distance threshold.
Each list of tree nodes is composed of the highest level

Algorithm 3 Create list of sons

1: procedure CREATE SONS LIST(node)
2: sons list← new List()
3: first son id← node.id < < 3
4: SN dimension← node.size / 2
5: for i = first son id to first son id + 8 do
6: calcSNPos(x, y, z, SN dimension)
7: node← create node (x, y, z, i)
8: sons list.add(node)
9: return sons list

nodes that are not father of any node that belongs to the
neighborhood. For each objective node, the algorithm starts
with the root node. The getProcessableNodes routine
implements the creation of the list of processable nodes for
the neighborhood of an objective node (Algorithm 4). First, a
list of neighboring nodes from the objective node is created.
Then, the octal tree is covered, starting from the root node,
with the purpose of creating the list of processable nodes
(lines 6–14). The covering consists of obtaining a node from
the queue of nodes to process and then checking if the node
is father of any node in the neighborhood of the objective
node. If the node being processed is not a father of any node
in the neighborhood, then the node is pushed to the list of
processable nodes, else the sons of the node are added to the
queue of nodes to process. The list of nodes is used as input
for the third step, the update of the potential of a node.

Algorithm 4 Get processable nodes

1: procedure GET PROC NODES(obj node, octal tree, nr)
2: NN← getNeighCells(obj node , nr)
3: processable nodes← create queue()
4: NQ← create queue()
5: NQ.push(octal tree)
6: while !NQ.isEmpty() do
7: node← NQ.pop()
8: if isFatherOfNeighMember(node, NN) then
9: if !node.is box() then

10: NQ.push(node.get sons queue())
11: else
12: processable nodes.push(node)
13: else
14: processable nodes.push(node)
15: return processable nodes

Self-gravity calculation. The final step is to calculate the
total self-gravity force vector for every node of the occupied
nodes list. The total self-gravity force is calculated based on
the lists built in step two, instead of using the occupied cells
that are used on the baseline implementation. After updating
the potential for each objective node, the new vector values
are transferred to the main force calculation module to be
integrated with the contact forces. Algorithm 5 presents the
self-gravity calculation process of an occupied node. The
process is called after creating the octal tree and the list of
processable nodes for the occupied node neighborhood. In
the algorithm, for each processable node, the force vector
respect to the occupied node is calculated and added to the
total force vector. The total force vector is returned to be
broadcasted to all the worker processes of ESyS-Particle.

Prepared using sagej.cls



8 Journal Title XX(X)

Algorithm 5 Self-gravity calculation of a node

1: procedure UPDATE SELF-GRAVITY(on, ot, pn)
2: total force vector← createEmptyForceVector()
3: for each pnode in pn do
4: force vector← processBHNode(on, pn)
5: sumFV(total force vector, force vector)
6: return total force vector

Barnes & Hut implementation on ESyS-Particle
The self-gravity module on ESyS-Particle was extended
to implement the Barnes & Hut method. Two new
classes were included: Barnes_And_Hut_Node and
Barnes_And_Hut_Manager class. Barnes_And_Hut_Node
implements the basic functionalities of the node. It is
responsible for the creation of a new node and holds the
getters and setters of the attributes of the class, and the
dispose functions. Barnes_And_Hut_Manager hosts the
core functions of the Barnes & Hut method. This class is
responsible of creating and disposing the octal tree in each
update of the self-gravity, implementing the algorithms
that creates the list of tree nodes and retrieves the list of
neighbors of an objective node. The self-gravity calculation
code in ESyS-Particle was adapted to use the list of nodes
retrieved from Barnes_And_Hut_Manager instead of using
the list of occupied nodes that is used by the occupied cells
method in the standard self-gravity module.

The binary tree
This subsection describes the binary tree and the main
differences with the octal tree implementation.

Structure and creation of the binary tree. Figure 4 shows
a sample binary tree for a self-gravity grid composed of 64
boxes. The generated tree has seven levels. Each node has
a unique identifier in the corresponding level (an integer in
binary code). A node is the father of another if it satisfies
idf = ids/(102×(levels/ levelf ), where idx is the identifier
of the node and levelx is the level of the node. The underscore
2 denotes that the number is in binary base. This way, the
procedure to know if a node is son of another is O(1).
Instead of dividing by 108 (as in the octal tree), the division
is performed by 102 by a right shift operation.

02

02

02

02

· · ·

02 12

12

12

12

108 118

1102 1112

· · ·

1111102 1111112 → level 6

· · ·

→ level 3

→ level 2

→ level 1

→ level 0

· · ·

· · ·

· · ·

Figure 4. Example of enumeration for a binary tree with seven
levels for a self-gravity grid composed of 64 boxes.

To build the tree, the space represented by a node is
divided in two by its largest axis. The partitions are not
necessarily cubic and the binary tree has the advantage that
the represented space does not need to be cubic. Partitioning
over the largest axis guarantees that the leaf nodes are of the
same size and position of the self-gravity grid boxes.

Comparison of the binary tree and the octal tree. Node
778 of Figure 3 is taken as an example to perform the
trees comparison. This node corresponds to 1111112 in the
binary tree. Assuming that all boxes are occupied and the
neighborhood size is zero, in the binary tree the list of tree
nodes is comprised of five elements: node 02 (level 1), node
102 (level 2), node 1102 (level 3), node 11102 (level 4), and
node 111102 (level 5). On the other hand, the list of tree
nodes of the octal tree has 13 elements. Despite having more
levels, the list of tree nodes for the binary tree has fewer
elements then the octal tree and the resolution of the partition
tree grows slower when moving closer to the objective node.

Regarding the implementation of the algorithm in ESyS-
Particle, instead of performing a shift of three bits, a one bit
shift is applied to multiply the nodes identifiers by 2. Another
difference in the implementation of the binary tree with
respect to the octal tree is the tree height calculation process,
which involves the three axis instead of only considering the
x axis as in the octal tree. The largest axis is divided by two
up to the stage where the three axis have the same size of
a box. Each time that the division is performed, the level
count is incremented by one. Except for those differences,
the structure and the algorithm to update self-gravity in
the binary tree is the same as the octal tree. After creating
the lists of nodes for the occupied nodes, the gravitational
potential is calculated and delivered to ESyS-particle.

Increasing the numerical accuracy of the octal
tree algorithm
This section describes a different approach to increase the
numerical accuracy of the simulations using the octal tree
strategy. This approach aims to diminish the error in the
calculation of the potential at the nodes by increasing the
precision of the calculation of the center of mass of the tree
nodes, computing it in higher levels of the tree using the
particles, rather than using the potential of the lower levels.

Each node of the octal tree is modeled as a point like
particle. For the particular case of nodes that belong to the
lower level of the tree, the center of the node is located at
the center of mass of the particles that belong to the space
delimited by the node. Then, the total mass of a node is the
sum of all the nodes of the particle. The center of mass and
the total mass of the nodes that belong to the higher levels
of the tree are computed using the values obtained for the
son nodes of the immediate lower level. This means that the
center of mass of the higher level is computed based on a
previous calculation, thus there is a loss of precision of the
calculation of the potential as a consequence.

The octal tree algorithm was modified to prove that the
precision of the algorithm increases by calculating the center
of mass in higher levels of the tree. The modification of the
algorithm consisted of calculating the center of mass using
the particles for up to the level n− 1 of the tree, which is the
first level of nodes that have son nodes.

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 9

Test scenario and instances
This section describes the test scenarios and instances used
in the experimental evaluation of the parallel self-gravity
calculation implemented in ESyS particle profiling results of
the optimized version.

Two agglomerates scenario
The first test scenario is composed of two agglomerates of
particles. Both agglomerates have the property that each
particle of one agglomerate has an identical copy of it on the
other agglomerate (but the position of both particles is central
mirrored). The agglomerates are symmetrical with respect to
the origin of the coordinates system (point (0,0,0)). Thus, the
center of mass is located in the point (0,0,0), and it is halfway
the center of mass of each agglomerate.

The creation of the test scenario starts by the generation
of one agglomerate with the tool GenGeo that is included in
ESyS-Particle. After that, a central symmetry is performed so
that the agglomerates are separated by five kilometers. This
way, the center of mass of the two agglomerates together is
located halfway to the center of mass of the agglomerates
taken separately. The collisions between the particles are
configured to be pure elastic. The initial speed of the particles
is set to be 5 m/s. The velocity has opposite direction for each
agglomerate. The velocity direction is also tangential to the
Z axis and is perpendicular to the line that passes through
the center of mass of each agglomerate. The density of the
individual particles is 3000 g/cm3.

Table 1 reports details of instances generated based in the
two agglomerates scenario. Three instances were created:
i) a small instance, composed of 3, 866 particles, each one
having a radius from 50 m to 100m; ii) a medium size
instance with 11, 100 particles with a radii from 35 m to
70 m; and iii) a large instance composed of 38, 358 particles
with a radii from 20 m to 60 m. The mass of the instances
is not the same for all the instances and oscillates from
1.2×1012 kg to 1.7×1012 kg. However, the masses of the
instances are of the same order of magnitude. Figure 5 shows
a representation of the large instance of the two agglomerate
scenario. The space was configured to be of cubic form
and measuring 4096 m in each axis direction. For the small
instance, the box length is 256 m long, and for the medium
and large instances the box length is 128 m long.

Table 1. Instances of the two agglomerates scenario.

instance name # particles particle radius (m)

small 3,866 50-100
medium 11,100 35-70
large 38,358 20-60

All instances were simulated for 100, 000 time steps
of 0.01 s long. The simulations were executed using a
varying number of computational resources to evaluate the
speedup and scalability of the proposed implementation. In
all simulations, the self-gravity is updated after at least one
particle has moved more than a certain distance threshold
that was configured to be two times the radius of the biggest
particle. So, the execution of the scenarios using small
particles will have more updates of the self-gravity than the
instances with large particles.

Figure 5. The two agglomerate scenario

The size of the grid box in ESyS-Particle must satisfy
boxl ≥ 2× rmax, where boxl is the box length and rmax is
the maximum radius of a particle. Using a bigger box implies
lower accuracy of the calculations. So, the value of boxl has
to be as close as possible to 2× rmax and also be a power of
two. This way, the box size for the small instance is 256 m,
and for both medium and large instances is 128 m. The total
number of boxes for the small instance is 32,768, while for
medium and large instances the number of boxes is 262,144.

For the small instance, the octal tree has six levels and
37,449 nodes. On the other hand, the binary tree for the small
instance has 16 levels and 65,535 nodes. For the medium and
large instances the octal tree has seven levels and 299,593
nodes, while the binary has 19 levels and 524,287 nodes. So,
for all instances executed in this work, the memory used by
the binary tree is roughly twice the memory used by the octal
tree. This feature shows that the octal tree can scale to a larger
number of boxes compared to the binary tree. Simulations
were executed for 10,000 time steps of 0.01 s each (a total
time of 100 s). The neighborhood was configured to be of
length five. This way, when creating the list of nodes that
correspond to an objective node, the defined neighborhood is
a cube of 11 boxes long centered in the objective node.

Free falling symmetric cube
The second scenario consists of a cube of 1 km on each
side, filled with spherical particles with the same radius
and density. The particles are located in a cubical box
and separated from one another at least a distance that is
equivalent to 1/6 of a particle radius. Also, the particle radius
is bounded by the dimension of a box. The particle radius
is 3/6 of a box edge. Particles are located in a way that
the resultant cube is symmetric respect to its center. As a
consequence, the center of mass of the cube matches the
geometrical center of the cube.

The cube is generated in two stages: i) a small cube is filled
with particles at random locations bounded to the constraints
previously detailed in the paragraph, ii) the cube is copied
eight times to create a bigger cube. The copies are arranged
in a way that satisfies that the center of mass of the bigger
cube is located at the position (0,0,0) of the space. The
particles are given an initial speed of 0 m/s and a density of
3000 g/cm3. In this scenario, the cube should collapse in the
direction of its center of mass.

The free-fall equation of a sphere is used to calculate
the time needed for an spherical agglomerate of particles to
collapse under its own gravity. This equation is valid under
the supposition that the agglomerate is only affected by its
own gravity (i.e., the gravity generated by its own particles).

Prepared using sagej.cls



10 Journal Title XX(X)

Three scenarios were generated with different number
of particles (small, medium, and large). The cube for all
instances has 1 km long on each side, so the particles radii are
smaller as the particle number increases. The small scenario
has 32,768 particles, the medium scenario has 262,144
particles, and the large scenario has 2,097,152 particles.
Table 2 presents the details about the generated instances
and Figure 6 shows an example representation for the small
instance.

Table 2. Instances of the free falling symmetric cube scenario.

instance # particles particle free fall
name radius (m) time (s)

small cube 32,768 10.42 3079
medium cube 262,144 5.21 3079
large cube 2,097,152 2.60 3088

Figure 6. Example of tree partition for the cube scenario (initial
state of the small instance of 32,768 particles).

The size of the grid box in ESyS-Particle must satisfy
boxl ≥ 2× rmax, where boxl is the box length and rmax is
the maximum radius of a particle. Using a bigger box implies
lower accuracy of the calculations. So, the value of boxl has
to be as close as possible to 2× rmax and also be a power of
two. This way, the box size for the small instance is 256 m,
and for both medium and large instances is 128 m. The total
number of boxes for the small instance is 32,768, while for
medium and large instances the number of boxes is 262,144.

For the small instance, the octal tree has six levels and
37,449 nodes and the binary tree for the small instance has 16
levels and 65,535 nodes. For the medium and large instances
the octal tree has seven levels and 299,593 nodes, while the
binary has 19 levels and 524,287 nodes. So, for all instances,
the memory used by the binary tree is approximately twice
the memory used by the octal tree. This feature shows that the
octal tree can scale to a larger number of boxes compared to
the binary tree. Simulations were executed for 10,000 time
steps of 0.01 s each (a total time of 100 s). The neighborhood
was configured to be of length five. This way, when creating
the list of nodes that correspond to an objective node, the
defined neighborhood is a cube of 11 boxes long, centered in
the objective node.

Hardware platform
The experimental evaluation was performed on a AMD
Opteron Magny Cours Processor 6272 @ 2.09GHz, with 64
cores and 48GB of RAM. The server is part of Cluster FING,
Universidad de la Republica, Uruguay (Nesmachnow 2010).

Profiling the optimized version of self-gravity
calculation
A profiling of the self-gravity module before and after the
implementation of the occupied cells method was performed.
The profiling was performed using VTune amplifier by Intel.

The main results of the profiling showed that method
BoxCoords::getZ, which consumed 2269 s in the non-
optimized version, had a negligible execution time in the
occupied cells implementation. A similar behavior was
identified for routines SharedMemoryManager::getBox,
BoxCoords::compare, Box::getParticlesCount, and
SharedMemory::getBox. The modifications in routine
OnlyOccupCellsProcStrategy::getNextOrigin, that
searches for the next node to process, improve the execution
time from consuming 704 s to consume a negligible time
compared to the other routines. Full details of the profiling
analysis are reported in Rocchetti et al. (2017). Finally,
improvements on routine Point::getX allowed it to execute
8 times faster (from 876 s to 109 s). These results account
for notably performance improvements when using the
new proposed schema for computing self-gravity. The
new implementation allows scaling up to perform larger
simulation, i.e., involving millions of particles, in reasonable
execution times. Next section reports the full experimental
evaluation of the implemented methods.

Experimental evaluation: occupied cells
versus octal tree
This section describes the performance and numerical
analysis of the occupied cells and the octal tree self-gravity
calculation methods implemented in ESyS-Particle for the
two agglomerate scenario and the collapsing cube scenario.
First, performance results are reported and discussed. Then,
the numerical accuracy of the results is analyzed, by studying
the position of the center of mass and the conservation of the
angular momentum for the two methods.

Results for the two agglomerates scenario
This subsection reports the performance evaluation results
for the large instance of the two agglomerates scenario. The
complete results for the small and medium size instances are
reported in our previous work (Nesmachnow et al. 2019).

Table 3 reports the performance results for the large
instance using the implemented Barnes & Hut method.
The lowest execution time was 4.96×104 s, using the
configuration with four processes and four threads. The
percentage of time spent on gravity calculations varied from
68% (using configuration (1,1,1) and 16 gravity threads)
to 88% (using configuration (1,2,2) and 4 gravity threads),
meaning that most of the execution time was spent on self-
gravity calculations rather than on contact forces calculation.
With regard to the average self-gravity calculation time,
the lowest value was 11.01s, using one process and eight

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 11

Table 3. Performance results of the Barnes & Hut method for
the large instance of the two-agglomerate scenario.

particle gravity execution self-gravity self-gravity avg. self-
processes threads time(s) time updates gravity time(s)

1 (1,1,1) 1 8.58×104 71% 3813 16.06
1 (1,1,1) 2 7.45×104 76% 3813 12.22
1 (1,1,1) 4 6.00×104 74% 3813 11.67
1 (1,1,1) 8 5.48×104 77% 3813 11.01
1 (1,1,1) 16 8.32×104 68% 3815 14.84
2 (1,1,2) 1 7.74×104 77% 3807 15.65
2 (1,1,2) 2 6.34×104 69% 3807 11.48
2 (1,1,2) 4 5.96×104 71% 3813 11.13
2 (1,1,2) 8 6.52×104 76% 3807 13.09
2 (1,1,2) 16 7.36×104 76% 3807 14.69
4 (1,2,2) 1 7.32×104 83% 3781 16.08
4 (1,2,2) 2 6.31×104 75% 3781 12.43
4 (1,2,2) 4 4.96×104 88% 3781 11.50
4 (1,2,2) 8 6.14×104 84% 3781 13.67
4 (1,2,2) 16 6.77×104 83% 3781 14.84
8 (2,2,2) 1 7.43×104 83% 3781 16.26
8 (2,2,2) 2 7.14×104 76% 3781 14.35
8 (2,2,2) 4 6.35×104 84% 3781 14.03
8 (2,2,2) 8 6.77×104 80% 3781 14.37
8 (2,2,2) 16 6.35×104 82% 3781 13.79

threads. Despite that the large instance has almost four
times more particles than the medium instance, the average
self-gravity calculation time was only 1.26× longer. These
results indicate that the growth in the average self-gravity
calculation time is sub-linear when using the Barnes & Hut
method. The reason is that the method is based in cells rather
than the individual particles. This way, if a scenario grows
in number of particles but the cell size stays unchanged, the
increment in execution time will be sub-linear. Anyway, if
more precision is needed, smaller cells should be used, hence
resulting in larger execution times.

On the large instance, the self-gravity was updated
between 3781 and 3813 times. So, the number of gravity
updates increases when the size of the particles decreases.

In general, using the Barnes & Hut method to simulate
the two agglomerates scenario lowered the percentage of
time calculating the self-gravity in up to 23%. This effect
was caused by the up to 10× lower average self-gravity
calculation time of the Barnes & Hut method in comparison
with the occupied cells method. In addition, the overall
execution time of the scenario of the two agglomerates
using the Barnes & Hut method was affected by the 10×
acceleration of the average self-gravity calculation time.
Using the Barnes & Hut method, the execution time reported
is one order of magnitude lower than the occupied cells
method. This is a very relevant performance result that allows
the execution of instances with a larger number of particles,
and also for a larger number of time steps.

Results show a sub linear increase in the performance of
the proposed implementation of the Barnes & Hut method
when increasing the number of computational resources. The
reason for this behavior is twofold: i) the average self-gravity
calculation time is usually too short to exploit the benefits
of a parallel environment, ii) the process of creation and
deletion of the Barnes & Hut tree was not implemented in
parallel, so most of the time updating the self-gravity was
spent performing sequential operations.

Collapsing cube scenario
This subsection reports and analyzes the performance results
of both the occupied cells and the Barnes & Hut methods for
the defined instances of the collapsing cube scenario.

Small instance. Table 4 reports the experimental results
of the occupied cells method for the small cube instance.
The number of self-gravity updates was 11 for all the
tested configurations of processes and threads. The lowest
execution time was 1.50×104 s using four processes and
eight threads. The lowest average self-gravity calculation
time (1238.24 s) was also achieved with the same
configuration of processes and threads. However, the lowest
percentage of time computing self-gravity (71%) was
obtained using one process and four threads.

Table 4. Performance results of the occupied cells method for
the small instance of the collapsing cube scenario.

particle gravity execution self-gravity self-gravity avg. self-
processes threads time(s) time updates gravity time(s)

1 (1,1,1) 1 3.26×104 82.79% 11 2451.75
1 (1,1,1) 2 2.90×104 77.60% 11 2046.41
1 (1,1,1) 4 2.45×104 71.51% 11 1591.73
1 (1,1,1) 8 2.10×104 65.10% 11 1241.98
2 (1,1,2) 2 2.24×104 84.86% 11 1725.69
2 (1,1,2) 4 2.22×104 84.77% 11 1711.92
2 (1,1,2) 8 1.76×104 80.02% 11 1279.81
4 (1,2,2) 1 3.34×104 98.65% 11 2998.07
4 (1,2,2) 2 2.41×104 91.42% 11 2001.9
4 (1,2,2) 4 2.06×104 81.48% 11 1524.34
4 (1,2,2) 8 1.50×104 91.10% 11 1238.24

In turn, Table 5 reports the results of the Barnes &
Hut method for the small instance of the collapsing cube
scenario. The number of self-gravity updates was 13 for all
the configurations. Results indicate that the variation in the
self-gravity computation time when increasing the number
of self-gravity threads was about 50%. The lowest value
reported was 26.14 s using one process and four threads,
and the highest value was 39.28 s using four processes
and one thread. However, the lowest execution time was
2.25×103 s using eight processes and eight threads. The
lowest percentage of time calculating the self-gravity was
4.51% using one process and two threads. Most of the
simulation time was spent on the calculation of the contact
forces, varying from 81.9% of the time to 96.5% of the time.

The percentage of time calculating self-gravity during the
simulations was analyzed. Results indicate that using the
occupied cells method, most of the execution time was spent
calculating self-gravity, with values varying from 65% to
98% of the total execution time of a simulation. On the
other hand, for the Barnes & Hut method the percentage
of time spent calculating self-gravity varied from 4% to
19%. In addition, the average self-gravity calculation time
of both methods was compared. The lowest value of the
average self-gravity calculation time for Barnes & Hut was
26.14 s, two orders of magnitude lower than the lowest value
of the occupied cells method (1238.24 s). The self-gravity
was calculated up to 47.37×47.37×47.37× faster using the Barnes & Hut
method rather than using the occupied cells method. The
reduction of the calculation time of the self-gravity allows
the simulation of larger and more realistic scenarios.

Prepared using sagej.cls



12 Journal Title XX(X)

Table 5. Performance results of the Barnes & Hut method for
the small instance of the collapsing cube scenario.

particle gravity execution self-gravity self-gravity avg. self-
processes threads time(s) time updates gravity time(s)

1 (1,1,1) 1 8.89×103 4.78% 13 32.65
1 (1,1,1) 2 8.79×103 4.51% 13 30.51
1 (1,1,1) 4 7.52×103 4.52% 13 26.14
1 (1,1,1) 8 7.64×103 4.59% 13 26.99
2 (1,1,2) 1 4.24×103 8.49% 13 27.68
2 (1,1,2) 2 7.41×103 5.60% 13 31.90
2 (1,1,2) 4 7.83×103 5.35% 13 32.21
2 (1,1,2) 8 6.41×103 6.34% 13 31.24
4 (1,2,2) 1 5.10×103 10.01% 13 39.28
4 (1,2,2) 2 3.62×103 11.47% 13 31.90
4 (1,2,2) 4 3.30×103 12.99% 13 32.93
4 (1,2,2) 8 3.85×103 11.21% 13 33.18
8 (2,2,2) 1 2.35×103 19.11% 13 34.54
8 (2,2,2) 2 2.37×103 18.52% 13 33.80
8 (2,2,2) 4 2.39×103 18.31% 13 33.69
8 (2,2,2) 8 2.25×103 16.58% 13 28.65

Medium instance. Table 6 reports the experimental results
of the Barnes & Hut method for the medium instance of
the collapsing cube scenario. The number of self-gravity
updates was 21 for all the configurations used. The lowest
average self-gravity calculation time was 251.06 s, using
eight processes and four threads. According to the results, the
lowest percentage of time computing self-gravity was 7.69%,
using one process and two threads. The lowest execution
time obtained was 1.84×104 s using 27 processes and 16
threads. Results for the occupied cells method showed that
the of a single self-gravity update was 2.08×105 s. So, the
self-gravity calculation time in average for the Barnes & Hut
method is three orders of magnitude smaller than the result
reported for the occupied cells method. For this reason, the
complete performance study for the occupied cells method
was not performed in the context of this research.

Table 6. Performance results of the Barnes & Hut method for
the large instance of the collapsing cube scenario.

particle gravity execution self-gravity self-gravity avg. self-
processes threads time(s) time updates gravity time(s)

1 (1,1,1) 1 8.01×104 8.24% 21 314.69
1 (1,1,1) 2 7.38×104 7.69% 21 270.38
1 (1,1,1) 4 1.04×105 11.66% 21 575.64
1 (1,1,1) 8 7.89×104 9.71% 21 364.81
1 (1,1,1) 16 6.79×104 10.41% 21 336.64
8 (2,2,2) 2 3.56×104 20.78% 21 352.40
8 (2,2,2) 4 1.85×104 28.50% 21 251.06
8 (2,2,2) 8 2.80×104 35.42% 21 472.47
8 (2,2,2) 16 2.50×104 27.53% 21 327.87

27 (3,3,3) 16 1.84×104 36.34% 21 320.09

Large instance. Table 7 reports the results of the Barnes
& Hut method for the large instance of the collapsing cube
scenario. Executions using one process and one thread,
and using the occupied cells method were not performed
due to the large execution times required: the estimated
execution time using a configuration of one process and
one thread was 1.5×106 s, while the estimated execution
time using the occupied cells method was 9.0×107 s. The
large instance simulation performed 41 or 42 self-gravity
updates, depending on the configuration of processes and

threads used. The percentage of time of the simulation
spent updating self-gravity varied from 6.60% to 20.21%.
In addition, the lowest execution time was 1.25×105 s using
36 processes and 16 threads. The lowest average self-gravity
calculation time was 313.14 s.

Table 7. Performance results for the Barnes & Hut method on
the large instance of the collapsing cube scenario (2,097,152
particles).

particle gravity execution self-gravity self-gravity avg. self-
processes threads time(s) time updates gravity time(s)

8 (2,2,2) 8 1.43×105 20.21% 42 689.01
8 (2,2,2) 16 1.95×105 6.60% 41 313.14

27 (3,3,3) 8 1.57×105 8.65% 41 331.41
36 (3,3,4) 16 1.25×105 11.09% 41 336.72

Overall discussion for the collapsing cube scenario A
comparative analysis of the results after the execution of
the simulations using the Barnes & Hut method for the
large instance indicates that the execution time grows one
order of magnitude with respect to the medium instance.
However, the average self-gravity calculation time registered
for the medium and large instances was of the same order
of magnitude. The self-gravity calculation time did not vary
significantly because the Barnes & Hut method performance
is not bounded to the number of particles but to the number of
boxes. In the medium and large instances, the same box size
was used to perform the calculations. This means that, if the
number of boxes is fixed, increasing the number of particles
of a scenario does not affect the self-gravity calculation time.
Results show that the acceleration for the simulations of the
cube scenario using the Barnes & Hut method was more than
50× for the small instance, and was more than 100× for the
medium instance compared to the occupied cells method. In
addition, the average self-gravity calculation time was of the
same order of magnitude for the medium and large instance
of the cube scenario using the Barnes & Hut method. Thus,
performance improvements of up to 100× are also expected
in this case. These performance improvements allow scaling
up to perform realistic simulations with a large number of
particles (tens of millions) in reasonable execution times.

Numerical accuracy: analysis of the position of
the center of mass
This subsection studies the numerical accuracy of the results
obtained in the simulations performed using the occupied
cells and the Barnes & Hut methods.

Description of the studies The analysis is organized in two
parts: the study of the position of the center of mass for
the two agglomerates scenario and for the collapsing cube
scenario. Two analysis are presented for each scenario. One
is the comparison of the position of the center of mass
for the small size instance using both the occupied cells
method and the Barnes & Hut method. The second is an
analysis of the scalability of the Barnes & Hut method by
performing a comparison and discussion of the movement
of the position of the center of mass for the small, medium,
and large instances of both scenarios. Both studied scenarios
were configured to be symmetrical, so the center of mass
of all particles stays in the same position for the complete

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

1.5

×10−3

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

10

20

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

X comp. Y comp. Z comp. Modulus

(b) Barnes & Hut method.

Figure 7. Position of the center of mass over time for the small
instance of the two agglomerates scenario.

simulation. The less the center of mass moves during the
simulation, the more accurate to the reality represented. In
an ideal scenario, and due to the symmetrical characteristics,
the total movement of the center of mass should be zero
during the complete simulation. The analysis of the variation
of the position of the center of mass is performed in order to
determine the numerical accuracy of the proposed methods.
This analysis allows verifying that the approximations in
the proposed methods do not introduce significant errors on
the particles movement, thus allowing performing accurate
simulations of the systems studied.

Regarding the figures presented in this subsection, four
sets of data are reported in each figure: red, green, and blue
lines represent the evolution of the X, Y, and Z components
of the position of the center of mass for a simulation,
respectively. The variation of the modulus of the position of
the center of mass for the same simulation is represented in
black. Values are reported for different time step values for a
representative simulation.

Results for the two agglomerate scenario Figure 7 shows
the variation of the position of the center of mass for the
small instance of the two agglomerates scenario using the
occupied cells method (Figure 7a) the Barnes & Hut method
(Figure 7b).

Results show that the position of the center of mass varies
in the order of 1× 10−3 m when using the occupied cells
method and in the order of 1× 101 m when using the Barnes
& Hut method. So, a loss of precision of the calculation of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

10

20

30

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

(a) Medium scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

20

40

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

X comp. Y comp. Z comp. Modulus

(b) Large scenario.

Figure 8. Position of the center of mass over time for the
medium and large instances of the two agglomerates scenario
using the Barnes & Hut method.

the self-gravity is perceived when the Barnes & Hut method
is used with a neighborhood of size 3. The cause of the loss
of precision lies in the strategy implemented to traverse the
octal tree and to create the list of tree nodes from which the
self-gravity of a node is calculated. The strategy consists of
creating groups of tree nodes, that do not contain the node
to be calculated, into bigger nodes. The action of grouping
the nodes into bigger nodes causes a loss of precision in the
calculation. In addition, bigger nodes cause a larger loss of
precision in the calculation of the self-gravity. Rounding in
the calculation of the acceleration produced by grouping the
particles into a single major particle introduces changes in
the net force applied to the particles.

Figure 8 shows the position of the center of mass for the
medium (Figure 8a) and large (Figure 8b) scenarios using
the Barnes & Hut method. Results show that the position
of the center of mass in both scenarios varies in the same
order of magnitude as in the small scenario. The X and Y
components vary between zero and five meters, while the Z
component moves up to 36.01m in the medium scenario and
up to 40.26m in the large scenario at the time step 1× 105.
Recall that the two agglomerates are separated by 5, 000m.

Results for the collapsing cube scenario Figure 9 shows
the variation of the position over time of the center of mass
for the small cube scenario for the occupied cells method
(Figure 9a) and for the Barnes & Hut method (Figure 9b).
Results indicate that using either algorithm, the modulus of
the center of mass increases over time.

Prepared using sagej.cls



14 Journal Title XX(X)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

2

4

6

8

×10−4

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

1.5

2
×10−2

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

X comp. Y comp. Z comp. Modulus

(b) Barnes & Hut method.

Figure 9. Position of the center of mass over time for the small
instance of the cube scenario.

For the small instance, the position of the center of mass
varied in the order of 10−4 m for the occupied cells method,
and in the order of 10−2 m for Barnes & Hut, confirming
that the occupied cells method is more precise than Barnes
& Hut. However, the precision is higher for the collapsing
cube scenario rather than for the two agglomerates scenario,
suggesting that Barnes & Hut performs better in scenarios
with slow particles movements.

Figure 10 shows the position of the center of mass for
the medium and large scenarios using Barnes & Hut. The
maximum value for the position of the center of mass
was 36.0m (medium scenario) and 40.3m (large scenario),
both registered at timestep 1×105. Results indicate that the
variation of the position of the center of mass for the medium
and large instances is of the same order of magnitude than
for the small instance. Thus, the reported results show that
scaling the number of particles does not affect the numerical
accuracy of the results obtained. The reason of this behavior
is that the loss in precision is introduced mainly by the
calculation of the self-gravity, which is based on the nodes
and boxes rather than on the particles.

Numerical accuracy: analysis of the angular
momentum
This section studies the conservation of the angular
momentum for both studied scenarios using a neighborhood
of size three. Results obtained are reported, commented, and
discussed next.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

×10−2

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

(a) Medium cube scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0.5

1

1.5

2

×10−2

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

X comp. Y comp. Z comp. Modulus

(b) Large cube scenario.

Figure 10. Position of the center of mass over time for the cube
scenario using the Barnes & Hut method.

Angular momentum and its relevance. The angular
momentum is used to calculate and describe the rotational
momentum of group of particles. The angular momentum is
important because it has the property that it is conserved with
respect to a point and it is not affected by external forces. The
angular momentum of a point particle with respect to the
origin (measured in kgm2

s ) is L = Iω, where I represents
the moment of inertia for the particle, and ω is the angular
velocity of the particle with respect to the origin. In the
analysis, the modulus of the angular momentum vector is
calculated, and the variation is studied and commented.

Results for the two agglomerates scenario. Figure 11
shows the shows the variation of the angular momentum
over time for the small instance of the two agglomerates
scenario using occupied cells and Barnes & Hut algorithms.
The value for the angular momentum is 6.13×1018 kg.m2/s
in the last timestep, using either method (1×105). So, the
obtained results suggest that the angular momentum for the
small instance is conserved with the same precision for the
occupied cells method and the Barnes & Hut method.

Figure 12 shows the variation of the angular momentum
over time for the medium and large instances of the two
agglomerates scenario using the Barnes & Hut method. The
initial value for the modulus of the angular momentum is
6.20×1018 kg.m2/s and the value at the end of the simulation
is 6.03×1018 kg.m2/s. The difference between the initial and
the final value is similar to the difference for the small
scenario using both methods (0.14×1018 kg.m2/s).

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

X comp. Y comp. Z comp. Modulus

(b) Barnes & Hut method.

Figure 11. Angular momentum over time for the small instance
of the two agglomerates scenario.

Results obtained for the large instance using the Barnes &
Hut method were similar to the ones obtained for the medium
instance. Values of the angular momentum modulus oscil-
lated between 8.42×1018 kg.m2/s and 8.33×1018 kg.m2/s,
(the difference of the angular momentum modulus was
0.09×1018 kg.m2/s). Results presented for the medium and
large instances suggest that for the two orbiting agglomerates
the angular momentum varies in the same order of magnitude
for Barnes & Hut and the occupied cells method.

Results for the collapsing cube scenario. Figure 13 shows
the variation of the angular momentum for the small instance
of the collapsing cube scenario using the occupied cells and
the Barnes & Hut methods. In this scenario, the modulus of
the angular momentum should ideally remain with a value
of 0 kg.m2/s for the complete simulation. Given that both
the occupied cells and the Barnes & Hut are approximated
methods, the results deviate from the ideal values. The
modulus of the angular momentum increased over timesteps.
The maximum value obtained for the small instance using
the occupied cells method was 1.48×106 kg.m2/s, while
using Barnes & Hut was 1.97×108 kg.m2/s, two orders of
magnitude larger. In addition, the increase of the modulus
is different for both methods: for the occupied cells method
the speed of the increase slowed down as the time steps
increase, while the Barnes & Hut method showed an steady
increase of the modulus throughout the simulation. In spite of
the difference in precision, the acceleration using the Barnes
& Hut method was calculated 47.37× faster than using the
occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

(a) Medium scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

X comp. Y comp. Z comp. Modulus

(b) Large scenario.

Figure 12. Angular momentum over time for the two
agglomerates scenario using the Barnes & Hut method.

Figure 14 graphically shows the results obtained for the
study of the evolution of the angular momentum over time
for the medium and large instances of the collapsing cube
using the Barnes & Hut method. The results presented in
Figure 14a show that the modulus of the angular momentum
also increases for this instance, even though the derivative
decreases for the last three time steps measured. The larger
value for the modulus of the angular momentum for the
medium scenario is 8.52×106 kg.m2/s.

Figure 14b graphically shows the results of the study of
the angular momentum performed to the large instance of the
collapsing cube scenario using the Barnes & Hut method. For
this instance, the large value for the modulus of the angular
momentum is 6.40×106 kg.m2/s; this value is of the same
order of magnitude as the larger value obtained for the small
instance using the occupied cells method. Also, the values of
the modulus of the angular momentum increase over time.

Overall, the results obtained for the study of the angular
momentum on the collapsing cube scenario suggest that as
the number of particles increases, the numerical results for
the modulus of the angular momentum using the Barnes &
Hut method approximate to the values obtained using the
occupied cells method. In addition, the angular momentum
increased over time for all the studied instances. The angular
momentum behaved differently for the collapsing cube
compared to the two agglomerates scenario, in which the
variation of the modulus of the angular momentum was such
that all the values were of the same order of magnitude.

Prepared using sagej.cls



16 Journal Title XX(X)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

−1

0

1

×106

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

1.5

×10−8

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

X comp. Y comp. Z comp. Modulus

(b) Barnes & Hut method.

Figure 13. Angular momentum over time for the small instance
of the collapsing cube scenario.

Experimental evaluation: binary tree and
upper tree level mass center calculation
This section reports results of the binary tree algorithm
for the two agglomerates scenario and a performance
comparison against the Barnes & Hut octal tree. In addition,
a study of the performance of a variation of the octal tree is
presented, computing the center of mass using particles of
the system at upper tree levels rather than in the lower levels.

Performance results of the binary tree algorithm
The performance of the binary tree algorithm was studied
over the two agglomerates scenario. All results correspond
to the average of five executions for each configuration of
processes and threads.

Table 8 reports the total execution time and the average
time of a self-gravity update for the octal tree and the
binary tree algorithms for the small instance of the two
agglomerates scenario. For the small instance, experiments
were executed for up to two processes and two threads,
taking into account the rule-of-thumb that recommends
assigning at least 5, 000 particles to each process on the
distributed mode of ESyS-Particle. When using either tree
algorithm, self-gravity was updated 82 times.

For self-gravity update, results show that the octal
tree algorithm is up to 2× faster than the binary tree
algorithm. Results confirm the rule-of-thumb, since the
lowest execution time was obtained using one process and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

−5

0

5

×106

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

(a) Medium scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

−5

0

5

×106

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

X comp. Y comp. Z comp. Modulus

(b) Large scenario.

Figure 14. Angular momentum over time for the collapsing
scenario using the Barnes & Hut method.

Table 8. Performance results for the small instance of the two
agglomerate scenario.

octal tree binary tree

particle #gravity execution self-gravity execution self-gravity
processes threads time(s) time(s) time(s) time(s)

1 (1,1,1) 1 9.15×102 10.11 1.30×103 14.55
1 (1,1,1) 2 6.64×102 6.99 1.03×103 11.65
2 (1,1,2) 1 9.59×102 10.58 1.76×103 18.78
2 (1,1,2) 2 7.08×102 7.40 1.47×103 15.18

one thread. When increasing the number of gravity threads
from 1 to 2, the small instance ran approximately in 30%
less time for the octal tree, whereas in the case of the binary
tree the instance finished the execution in approximately 25%
less time. Thus, the small instance ran faster using the octal
tree algorithm than using the binary tree.

For the medium instance, the evaluation was performed
for six configurations of gravity processes and gravity
threads. When using either tree algorithm, the self-gravity
was updated for a total of 127 times. Table 9 reports the
results obtained for the execution of the medium instance
of the two agglomerate scenario when using the octal tree
and the binary tree algorithm. The lowest execution time was
achieved using the octal tree algorithm with a configuration
of two processes and four threads, which supports the rule
of thumb. For the medium instance, the best binary tree
execution time was approximately 20% slower than the best
octal tree time.

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 17

Table 9. Performance results for the medium instances of the
two agglomerate scenario using Barnes & Hut.

octal tree binary tree

particle #gravity execution self-gravity execution self-gravity
processes threads time(s) time(s) time(s) time(s)

1 (1,1,1) 1 6.87×103 51.37 8.02×103 59.55
1 (1,1,1) 2 4.75×103 31.22 6.32×103 46.41
1 (1,1,1) 4 4.30×103 31.09 5.27×103 38.19
2 (1,1,2) 1 7.14×103 54.23 9.76×103 72.70
2 (1,1,2) 2 4.57×103 33.85 7.31×103 53.70
2 (1,1,2) 4 4.10×103 30.35 5.70×103 41.26

The large instance was studied using 20 different
configurations of processes and threads. The gravitational
potential was updated 264 times for both algorithms. Table
10 reports the results obtained for each studied configuration.

Table 10. Performance results for the two agglomerate
scenario with 38,358 particles (large instance).

octal tree binary tree

particle #gravity execution self-gravity execution self-gravity
processes threads time(s) time(s) time(s) time(s)

1 (1,1,1) 1 1.49×104 49.79 1.89×104 64.40
1 (1,1,1) 2 1.04×104 32.86 1.34×104 42.94
1 (1,1,1) 4 9.21×103 28.08 1.10×104 35.38
1 (1,1,1) 8 9.59×103 29.60 1.10×104 35.37
1 (1,1,1) 16 1.09×104 34.81 1.16×104 36.75
2 (1,1,2) 1 1.43×104 49.58 1.90×104 65.97
2 (1,1,2) 2 1.07×104 35.54 1.27×104 42.79
2 (1,1,2) 4 1.01×104 32.62 1.10×104 35.81
2 (1,1,2) 8 1.09×104 35.79 1.02×104 33.92
2 (1,1,2) 16 1.06×104 34.95 1.12×104 36.32
4 (1,2,2) 1 1.62×104 57.63 1.88×104 65.91
4 (1,2,2) 2 1.07×104 36.56 1.49×104 52.46
4 (1,2,2) 4 9.56×103 32.27 9.72×103 32.64
4 (1,2,2) 8 1.04×104 35.07 9.82×103 33.09
4 (1,2,2) 16 1.07×104 36.20 1.09×104 37.28
8 (2,2,2) 1 1.65×104 60.27 1.74×104 62.80
8 (2,2,2) 2 1.12×104 39.78 1.11×104 39.23
8 (2,2,2) 4 1.03×104 36.72 8.83×103 30.94
8 (2,2,2) 8 9.69×103 34.29 9.58×103 33.86
8 (2,2,2) 16 1.02×104 36.38 1.06×104 37.10

For the large instance, the binary tree with eight processes
and four threads had the best execution time. This result
supports the rule of thumb. Also, for the same number of
processes, the configurations using 8 or 16 threads performed
slower than the configurations using 4 threads. Results
obtained suggest that the binary tree algorithm performs
faster than the octal tree for large instances.

Numerical accuracy of the binary tree
algorithm: analysis of the center of mass
Figure 15 shows the position of the center of mass (x, y,
z components, and its module) and its variation over time
for the small instance of the two agglomerates scenario for
the octal tree, and the binary tree methods. Results confirm
that the numerical accuracy using the binary and octal trees
are of the same order of magnitude. However, the octal tree
presented a slightly lower change in the position of the center
of mass compared to the binary tree algorithm. The study of
the numerical accuracy for the medium and large instances
are reported in Figures 16 and 17.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

×10−3

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

×10−3

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

X comp. Y comp. Z comp. modulus

(b) Binary tree algorithm.

Figure 15. Position of the center of mass over time for the
small instance of the two agglomerates scenario using the
Barnes & Hut method with octal and binary tree.

Results support the commented trends for the small
instance. In addition to the differences in accuracy,
differences in the position of the components of the center of
mass were detected when using the different tree structures.
An example is shown in Figure 15: the position of the center
of mass when using the octal tree moved away from the
origin in the direction of the x component up to step 6, 000,
but then went back to the origin, while this movement did
not occur when using the binary tree structure. Either way,
the modulus of the center of mass behaves in a similar way
for the binary and octal trees. From the reported results, the
method based on the binary tree emerges as robust alternative
to the standard octal tree proposed by Barnes & Hut.

Numerical accuracy of the binary tree
algorithm: analysis of the angular momentum
Figure 18 reports the results of the study of the angular
momentum for the two agglomerates scenario using the octal
tree and the binary tree for the small instance. Then, Figure
19 reports the results for the medium instance. Finally, Figure
20 report the results for the large instance. Results indicate
that the angular momentum is of the same order of magnitude
either using the octal tree or the binary tree.

Upper level direct calculation of the mass center
This section reports the experimental results of the upper
level direct calculation of the mass center. The results
presented include the study of the execution time and the
movement of the center of mass of the system.

Prepared using sagej.cls



18 Journal Title XX(X)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0.0

0.05

0.1

0.15

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.1

0.2

0.3

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

X comp. Y comp. Z comp. modulus

(b) Binary tree algorithm.

Figure 16. Position of the center of mass over time for the
medium instance of the two agglomerates scenario using the
Barnes & Hut method with octal and binary tree.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.1

0.2

0.3

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.2

0.4

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s

(m
)

X comp. Y comp. Z comp. modulus

(b) Binary tree algorithm.

Figure 17. Position of the center of mass over time for the large
instance of the two agglomerates scenario using the Barnes &
Hut method with octal and binary tree.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

X comp. Y comp. Z comp. modulus

(b) Binary tree algorithm.

Figure 18. Position of the center of mass over time for the
small instance of the two agglomerates scenario using the
Barnes & Hut method.

The aim of the study is to prove that the precision of
the calculation of the potential increases by calculating the
center of mass in upper levels using particles. So, a study of
the position of the center of mass was performed. The large
instance of the two agglomerates scenario was considered.
The study consisted of varying the neighborhood size of the
boxes and then compare the movement of the position of the
center of mass of the system over time.

Table 11 shows the execution time results obtained
for the set of configurations defined and tested. All the
executions were performed for 10, 000 time steps using
the large instance of the two agglomerates scenario and a
configuration of 8 processes and 8 threads. The first row
of the table corresponds to the execution of the baseline
configuration. Then, from the second row on, the results
correspond to the execution of the Barnes & Hut octal tree
using the adaptation introduced in Section 4.5 and increasing
the neighborhood size by one for each configuration.

Figure 21 shows the movement of the center of mass over
time for the configurations studied. Results indicate that the
movement of the center of mass reduces as the neighborhood
size increases. For the scenarios using a neighborhood size
0 to 3, every measure of the distance of the center of mass
towards the center of the system is greater than the measure
for the previous time steps. On the other hand, for the
configuration with a neighborhood size 4, the center of mass
starts to move nearer to the center of the system for the last
part of the simulation.

Prepared using sagej.cls



Rocchetti, Nesmachnow and Tancredi 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

X comp. Y comp. Z comp. modulus

(b) Binary tree algorithm.

Figure 19. Position of the center of mass over time for the
medium instance of the two agglomerates scenario using the
Barnes & Hut method with the binary tree algorithm.

Results of the study of the center of mass for the octal
tree on Figure 17a show that the center of mass of the
system, for the scenario studied, moved 3.79×10−1 m on
time step 10, 000. On the other hand, using the upper level
direct calculation, the center of mass moved 7.94×10−4 m
on time step 10, 000. This way, results show that by applying
the strategy presented in this section, the precision of the
calculation improves up to three levels of magnitude.

Table 11. Performance results for the upper level direct
calculation of the mass center on the large instance
of the two agglomerate scenario.

neighb. execution self-gravity self-gravity avg. self-
size time(s) time updates gravity time(s)

0 1.80×103 1.28×103 264 4.86

1 1.73×103 1.16×103 264 4.39
2 1.96×103 1.44×103 263 5.49
3 2.99×103 2.16×103 263 8.21
4 3.00×103 2.50×103 263 9.49

Conclusions
This article presented the design, implementation, and
evaluation of efficient parallel algorithms for self-gravity
simulations in astronomical agglomerates. The algorithms
are implemented as a module for self-gravity in ESyS-
Particle, a DEM simulator for geological phenomena. Two
methods are presented and compared: the occupied cells
method, and the Barnes & Hut method.

The occupied cells method consists of updating the
acceleration of the occupied nodes of an overlying grid. A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

8

×1018

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

8

×1018

Timestep

A
ng

ul
ar

m
om

en
tu

m
(k

g.
m

2
/s

)

X comp. Y comp. Z comp. modulus

(b) Binary tree algorithm.

Figure 20. Position of the center of mass over time for the large
instance of the two agglomerates scenario using the Barnes &
Hut method with the binary tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.5

1

×10−2

Timestep

Po
si

tio
n

of
th

e
ce

nt
er

of
m

as
s(

m
)

OC Neig. 1 Neig. 2 Neig. 3 Neig. 4

Figure 21. Position of the center of mass over time for the large
instance of the two agglomerates scenario using the upper level
direct calculation of the mass center.

profiling analysis was performed to identify bottlenecks in
the implementation and specific modifications were included
to reduce the number of invocations of time consuming
routines. Two variants of the Barnes & Hut method were
proposed, using octal and binary trees for partitioning the
domain. The root of the tree is the whole simulation domain
and tree nodes are created by refining the space of the
simulation into eight regular cubical cells (octal tree) or
into two non-cubical ones (binary tree). The refinement is
recursively performed for each of the resultant nodes that
have particles. A specific variation was also proposed, in

Prepared using sagej.cls



20 Journal Title XX(X)

which the mass center of the tree nodes is calculated directly
from the particles in an upper level of the octal tree.

The proposed methods for self-gravity calculation were
evaluated over two realistic scenarios: two identical
agglomerates orbiting each other and a collapsing cube
scenario, including a instance with more than two million
particles. Results showed that the Barnes & Hut method was
10× faster than the occupied cells method in simulations
to compute self-gravity for the two agglomerates scenario
and up to 100× faster for the collapsing cube scenario. The
numerical accuracy was evaluated by studying the position
of the center of mass and the angular momentum over the
simulations. Results for two agglomerates scenario showed
that using the occupied cells method the position of the
center of mass varies in the order of 10−3 m, whereas it varies
in the order of 101 m when using Barnes & Hut. For the small
instance of the collapsing cube scenario, the position of the
center of mass using the occupied cells algorithm varied in
the order of 10−4 m, while using the Barnes & Hut algorithm
the position of the center of mass varied 10−2 m. Regarding
the angular momentum, the difference in values had the same
order of magnitude for both algorithms.

The comparison of the binary tree the octal tree variations
of Barnes & Hut showed that the octal tree algorithm
was up to 100% faster for the small instance, and 20%
faster for the medium instance compared to the binary
tree. On the other hand, the fastest execution time for the
large instance was computed for the binary tree algorithm,
suggesting that the binary tree algorithm performs faster than
the octal tree for large instances. The numerical accuracy
comparison indicated that both the position of the center of
mass and the angular momentum vary in the same order of
magnitude for both algorithms. Finally, results for the upper
level calculation improved the accuracy of the calculations
compared to the original Barnes & Hut. The center of mass
moved in the order of 10−1 m using Barnes & Hut. However,
using the upper level direct calculation, the center of mass
moved on the order of 10−4 m.

The main lines for future work include: extending the
performance evaluation to consider larger problem instances
and scenarios, and proposing more strategies to improve the
precision of the calculations over a simulation.

References
Abe S, Altinay C, Boros V, Hancock W, Latham S, Mora P, Place D,

Petterson W, Wang Y and Weatherley D (2009) ESyS-Particle:
HPC Discrete Element Modeling Software. Open Software
License version 3.

Bagla (2002) Treepm: A code for cosmological n-body simulations.
Journal of Astrophysics and Astronomy 23(3): 185–196.

Barnes J and Hut P (1986) A hierarchical O(N log N) force-
calculation algorithm. Nature 324(6096): 446–449.

Bode P, Ostriker JP and Xu G (2000) The tree particle-mesh n-body
gravity solver. The Astrophysical Journal Supplement Series
128(2): 561.

Couchman HMP (1991) Mesh-refined p3m-a fast adaptive n-body
algorithm. The Astrophysical Journal 368: L23–L26.

Frascarelli D, Nesmachnow S and Tancredi G (2014) High-
performance computing of self-gravity for small solar system
bodies. Computer 47(9): 34–39.

Fujiwara A, Kawaguchi J, Yeomans D, Abe M, Mukai T, Okada
T, Saito J, Yano H, Yoshikawa M and et al DS (2006) The
rubble-pile asteroid itokawa as observed by hayabusa. Science
312(5778): 1330–1334.

Greengard L and Rokhlin V (1987) A fast algorithm for particle
simulations. Journal of computational physics 73(2): 325–348.

Harris A, Fahnestock E and Pravec P (2009) On the shapes and
spins of “rubble pile” asteroids. Icarus 199(2): 310–318.

Hockney RW and Eastwood JW (1988) Computer simulation using
particles. crc Press.

Ishiyama T, Nitadori K and Makino J (2012) 4.45 pflops astrophys-
ical n-body simulation on k computer: the gravitational trillion-
body problem. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society Press, p. 5.

Khandai N and Bagla JS (2009) A modified treepm code. Research
in Astronomy and Astrophysics 9(8): 861.

Kravtsov AV, Klypin AA, Khokhlov and Alexei M (1997)
Adaptive refinement tree: a new high-resolution n-body code
for cosmological simulations. The Astrophysical Journal
Supplement Series 111(1): 73.

Nesmachnow S (2010) Computación científica de alto desempeño
en la Facultad de Ingeniería, Universidad de la República.
Revista de la Asociación de Ingenieros del Uruguay 61(1): 12–
15.

Nesmachnow S, Frascarelli D and Tancredi G (2015) A parallel
multithreading algorithm for self-gravity calculation on ag-
glomerates. In: International Conference on Supercomputing.
Springer, pp. 311–325.

Nesmachnow S, Rocchetti N and Tancredi G (2019) Large-
scale multithreading self-gravity simulations for astronomical
agglomerates. In: 2019 Winter Simulation Conference (WSC).
IEEE, pp. 3243–3254.

Rocchetti N, Frascarelli D, Nesmachnow S and Tancredi G (2017)
Performance improvements of a parallel multithreading self-
gravity algorithm. In: Latin American High Performance
Computing Conference. Springer, pp. 291–306.

Rocchetti N, Nesmachnow S and Tancredi G (2018) Comparison
of tree based strategies for parallel simulation of self-gravity
in agglomerates. In: Latin American High Performance
Computing Conference. Springer, pp. 141–156.

Rozitis B, MacLennan E and Emery J (2014) Cohesive forces
prevent the rotational breakup of rubble-pile asteroid (29075)
1950 DA. Nature 512(7513): 174–176.

Sánchez P and Scheeres D (2012) Dem simulation of rotation-
induced reshaping and disruption of rubble-pile asteroids.
Icarus 218(2): 876–894.

Tancredi G, Maciel A, Heredia L, Richeri P and Nesmachnow
S (2012) Granular physics in low-gravity environments using
discrete element method. Mnras 420: 3368–3380. DOI:
10.1111/j.1365-2966.2011.20259.x.

Weatherley D, Boros V, Hancock W and Abe S (2010) Scaling
benchmark of ESyS-Particle for elastic wave propagation
simulations. In: IEEE Sixth International Conference on e-
Science. IEEE, pp. 277–283.

Xu G (1994) A new parallel n-body gravity solver: Tpm. arXiv
preprint astro-ph/9409021 .

Prepared using sagej.cls


	Introduction
	Self-gravity simulations
	The self-gravity calculation problem
	Related work on spatial domain decomposition

	A parallel algorithm for self-gravity calculation
	DEM-based self-gravity simulations
	Implementation of the self-gravity algorithm on ESyS-Particle

	Adapted Barnes & Hut method for self-gravity calculation
	Octal tree structure
	Creation of the octal tree
	Creation of the self-gravity tree.
	Creation of the tree nodes list.
	Self-gravity calculation.

	Barnes & Hut implementation on ESyS-Particle
	The binary tree
	Structure and creation of the binary tree.
	Comparison of the binary tree and the octal tree.

	Increasing the numerical accuracy of the octal tree algorithm

	Test scenario and instances
	Two agglomerates scenario
	Free falling symmetric cube
	Hardware platform
	Profiling the optimized version of self-gravity calculation

	Experimental evaluation: occupied cells versus octal tree
	Results for the two agglomerates scenario
	Collapsing cube scenario
	Small instance.
	Medium instance.
	Large instance.
	Overall discussion for the collapsing cube scenario

	Numerical accuracy: analysis of the position of the center of mass
	Description of the studies
	Results for the two agglomerate scenario
	Results for the collapsing cube scenario

	Numerical accuracy: analysis of the angular momentum
	Angular momentum and its relevance.
	Results for the two agglomerates scenario.
	Results for the collapsing cube scenario.


	Experimental evaluation: binary tree and upper tree level mass center calculation
	Performance results of the binary tree algorithm
	Numerical accuracy of the binary tree algorithm: analysis of the center of mass
	Numerical accuracy of the binary tree algorithm: analysis of the angular momentum
	Upper level direct calculation of the mass center

	Conclusions

